da_what1_new
D/A Converter
<What are D/A converters?>
D/A Converters
D/A converters convert digital signals into analog format.
- Digital Data:
- Evenly spaced discontinuous values
- Temporally discrete, quantitatively discrete
- Analog Data (Natural Phenomena):
- Continuous range of values
- Temporally continuous, quantitatively continuous
Basic Operation of a D/A Converter
A D/A converter takes a precise number (most commonly a fixed-point binary number) and converts it into a physical quantity (example: voltage or pressure). D/A converters are often used to convert finite-precision time series data to a continually varying physical signal.
An ideal D/A converter takes abstract numbers from a sequence of impulses that are then processed by using a form of interpolation to fill in data between impulses. A conventional D/A converter puts the numbers into a piecewise constant function made up of a sequence of rectangular functions that is modeled with the zero-order hold.
A D/A converter reconstructs original signals so that its bandwidth meets certain requirements. With digital sampling comes quantization errors that create low-level noise which gets added to the reconstructed signal. The minimum analog signal amplitude that can bring about a change in the digital signal is called the Least Significant Bit (LSB), while the (rounding) error that occurs between the analog and digital signals is referred to as quantization error.