ROHM’s New SBDs: Achieving Class-Leading* Reverse Recovery Time with 100V Breakdown Voltage by Adopting a Trench MOS Structure that Significantly Improves VF-IR Trade-Off
Ideal for automotive LED headlamps and other high-speed switching applications

*ROHM February 15th, 2024 study

Packages
Switching Loss Comparison

ROHM has developed 100V breakdown Schottky barrier diodes (SBDs) that deliver industry-leading reverse recovery time (trr) for power supply and protection circuits in automotive, industrial, and consumer applications.

Although numerous types of diodes exist, highly efficient SBDs are increasingly being used inside a variety of applications. Particularly SBDs with a trench MOS structure that provide lower VF than planar types enable higher efficiency in rectification applications. One drawback of trench MOS structures, however, is that they typically feature worse trr than planar topologies - resulting in higher power loss when used for switching.

In response, ROHM developed a new series utilizing a proprietary trench MOS structure that simultaneously reduces both VF and IR (which are in a trade-off relationship) while also achieving class-leading trr.

Expanding on the four existing conventional SBD lineups optimized for a variety of requirements, the YQ series is ROHM’s first to adopt a trench MOS structure. The proprietary design achieves class-leading trr of 15ns that reduces trr loss by approx. 37% and overall switching loss by approx. 26% over general trench-type MOS products, contributing to lower application power consumption. The new structure also improves both VF and IR loss compared to conventional planar type SBDs. This results in lower power loss when used in forward bias applications such as rectification, while also providing less risk of thermal runaway which is a major concern with SBDs. As such, they are ideal for sets requiring high-speed switching, such as drive circuits for automotive LED headlamps and DC-DC converters in xEVs that are prone to generate heat.

Going forward, ROHM will strive to further improve the quality of its semiconductor devices, from low to high voltages, while strengthening its expansive lineup to further reduce power consumption and achieve greater miniaturization.

ROHM’s Power SBD Lineup
trr Comparison: Standard Trench MOS Products
 vs ROHM's New Products

SBD Trench MOS Structure

The trench MOS structure is created by forming a trench using polysilicon in the epitaxial wafer layer to mitigate electric field concentration. This reduces the resistance of the epitaxial wafer layer, achieving lower VF when applying voltage in the forward direction. At the same time, during reverse bias the electric field concentration is minimized, significantly decreasing IR. As a result, the YQ series improves VF and IR by approx. 7% and 82%, respectively, compared to conventional products.
And unlike with typical trench MOS structures where trr is worse than planar types due to larger parasitic capacitance (resistance component in the device), the YQ series achieves an industry-leading trr of 15ns by adopting a unique structural design. This allows switching losses to be reduced by approx. 26%, contributing to lower application power consumption.

Trench MOS Structure

Application Examples

• Automotive LED headlamps • xEV DC-DC converters • Power supplies for industrial equipment
• Lighting

Lineup

Package
Size Code
mm[inch]
Part No.
for Consumer
Data
Sheet
Part No.
for Automotive
(AEC-Q101 Qualified)
Data
Sheet
Absolute Max. Ratings Electrical Characteristics Circuit Online
Sales
VRM
[V]
Io
[A]
Tj Max.
[°C] 
VF Max.(Tj=25°C) IR Max.(Tj=25°C)
  Cond.   Cond.
PMDE
(PMDE)
2513[1005]
NewYQ1VWM10A PDF NewYQ1VWM10ATF PDF 100 1 175 0.70V IF=1A 6μA VR=100V Single
NewYQ2VWM10B PDF NewYQ2VWM10BTF PDF 2 0.77V IF=2A 10μA
PMDU
SOD-123FL
(PMDU)
3516[1408]
NewYQ2MM10A PDF NewYQ2MM10ATF PDF 100 2 175 0.77V IF=2A 10μA VR=100V Single
NewYQ3MM10B PDF NewYQ3MM10BTF PDF 3 IF=3A 15μA
PMDTM
SOD-128
(PMDTM)
4725[1910]
NewYQ2LAM10B PDF NewYQ2LAM10BTF PDF 100 2 175 0.67V IF=2A 15μA VR=100V Single
NewYQ3LAM10D PDF NewYQ3LAM10DTF PDF 3 0.64V IF=3A 30μA
NewYQ5LAM10C PDF NewYQ5LAM10CTF PDF 5 0.77V IF=5A 25μA
NewYQ5LAM10D PDF NewYQ5LAM10DTF PDF 0.73V 30μA
NewYQ5LAM10E PDF NewYQ5LAM10ETF PDF 0.61V 50μA
TO-277GE
TO-277A
(TO-277GE)
6546[2618]
NewYQ3RSM10SD PDF NewYQ3RSM10SDTF* PDF 100 3 175 0.64V IF=3A 30μA VR=100V Single
NewYQ5RSM10SD PDF NewYQ5RSM10SDTF* PDF 5 0.77V IF=5A 25μA
NewYQ8RSM10SD PDF NewYQ8RSM10SDTF* PDF 8 0.67V IF=8A 60μA
NewYQ10RSM10SD PDF NewYQ10RSM10SDTF* PDF 10 IF=10A 80μA
NewYQ12RSM10SD PDF NewYQ12RSM10SDTF* PDF 12 IF=12A 90μA
NewYQ15RSM10SD PDF NewYQ15RSM10SDTF* PDF 15 0.68V IF=15A 100μA
TO-252M/TO-252GE
TO-252AA
(TO-252M / TO-252GE)
10066[3926]
NewYQ20BGE10SD PDF - - 100 20 150 0.86V IF=20A 80μA VR=100V Single
- - NewYQ20BM10SDFH PDF
TO-263AB
TO-263AB
(TO-263L)
151101[5940]
YQ20NL10SD PDF YQ20NL10SDFH PDF 100 20 150 0.96V IF=20A 70μA VR=100V Single -
NewYQ20NL10SE PDF NewYQ20NL10SEFH PDF 0.86V 80μA
YQ30NL10SD PDF YQ30NL10SDFH PDF 30 0.99V IF=30A 95μA -
NewYQ30NL10SE PDF NewYQ30NL10SEFH PDF 0.86V 150μA
NewYQ20NL10CD PDF NewYQ20NL10CDFH PDF 20 0.71V IF=10A 70μA Cathode
Common
Dual
YQ30NL10CD PDF YQ30NL10CDFH PDF 30 0.72V IF=15A 100μA -
YQ40NL10CD PDF YQ40NL10CDFH PDF 40 IF=20A 160μA -
YQ60NL10CD PDF YQ60NL10CDFH PDF 60 0.77V IF=30A 200μA -

( ): ROHM Package

☆: Under development
* The TO-277GE package products released and sold by online distributors this time are rated for car infotainment and body systems. For each part number, we are preparing grades that can be installed in powertrains, etc. (using the same part number), with mass production scheduled to start in September 2024. (The packaging symbol after the above part numbers will differ)

Product Page and Related Information

Application notes highlighting the advantages of these new products in circuits along with a white paper that showcases the features of each SBD series are available on ROHM's website. An SBD page is also available that allows users to narrow down product options by entering voltage conditions and other parameters, facilitating the selection process during design. Click on the URLs below for more information.

■ ROHM SBD Product Page
https://www.rohm.com/products/diodes/schottky-barrier-diodes

■ Application Notes
Advantages of YQ Series: Compact and Highly Power Conversion Efficiency Schottky Barrier Diodes for Automotive
https://fscdn.rohm.com/en/products/databook/applinote/discrete/diodes/yq_sbd_automotive_an-e.pdf

■ White Paper
ROHM's SBD Lineup Contributes to Greater Miniaturization and Lower Loss in Automotive, Industrial, and Consumer Equipment
https://fscdn.rohm.com/en/products/databook/white_paper/discrete/diodes/sbd_lineup_wp-e.pdf

Online Sales Information

Online Distributors: DigiKey, Mouser and Farnell
Applicable Part Nos: Refer to the above table.
Availability: December 2023
Pricing: $2,5/unit (samples, excluding tax)
The products will be sold at other online distributors as well.

Online Distributors

  • DigiKey
  • Mouser
  • Farnell

Terminology

trr (Reverse Recovery Time)
The time it takes for the switching diode to switch from the ON state to completely OFF. The lower this value is, the smaller the switching losses.
Forward Voltage (VF)
A voltage drop that occurs when electricity flows in the forward direction from + to -. The lower this value is, the higher the efficiency.
Reverse Current (IR)
Reverse current generated when reverse voltage is applied. The lower this value is, the smaller the power consumption (reverse power loss).
Thermal Runaway
When a diode is conducted in the reverse direction, heat generated within the chip may exceed the heat dissipation of the package, causing IR to increase and eventually lead to destruction, - a phenomenon called thermal runaway. For SBDs with high IR values, thermal runaway is especially likely to occur, so care must be taken when designing circuits.

Video

Featured Products

Featured Products
100V Withstand High Performance
Schottky Barrier Diodes
YQ series (PDF: 1.4MB)