

ROHM starts production of 150V GaN HEMTs: Featuring breakthrough 8V withstand Gate Voltage

The first series of the new EcoGaNTM family contributes to lower power consumption and greater miniaturization in data centers and base stations

April 11th, 2022 ROHM Co., Ltd. Marketing Communication Division

*EcoGaN[™] is a trademark or registered trademark of ROHM Co., Ltd. *Please note that this document is current as of the date of publication

© 2022 ROHM Co., Ltd.

ROHM

Provide optimal products that contribute to energy and space saving from power devices to ICs and modules

Power Devices (power semiconductors)

Power ICs

SiC Devices

- SiC MOSFETs
- SiC SBD (Schottky barrier diodes)

Si Devices

- IGBTs
- SJ-MOSFETs
- SBD, FRD (Fast recovery diodes)

GaN Devices (GaN HEMT)

Shunt Resistors

- DC/DC Converter ICs
- LDOS (Low dropout)
- AC/DC converter ICs (SMPS)

Driver ICs

- Gate Driver ICs
- Motor Driver ICs

Standard ICs

• IPDs

Power Modules

Full SiC Power Modules

We are also providing products that combine power device elements and IC technology,

such as AC/DV converter ICs with built-in SiC MOSFETs.

GaN device is a device that could expand the ROHM's power portfolio

GaN (Gallium Nitride)

= A type of compound semiconductor material

	Si	4H-SiC	GaN
Bandgap (eV)	1.12	3.2	3.4
Dielectric constant	11.7	9.66	8.9
Breakdown field (MV/cm)	0.3	3	3.3
Electron saturation velocity (10 ⁷ cm/s)	1	2	2.5
Electron mobility in the bulk (cm²/Vs)	1350	720	900
Thermal conductivity (W/cm·K)	1.5	4.5	2 to 3

Wide band gap
High electron saturation velocity
Large breakdown electric field

GaN is a great potential material that could contribute further energy saving, such as SiC

HEMT (High Electron Mobility Transistor)

= A type of transistor element structure

GaN HEMTs can significantly reduce switching losses compared to Si MOSFETs

Switching Loss Comparison

Device Comparison	on (Comparison in the 650V band)						
		Si SJ MOSFET	SiC MOSFET	GaN HEMT			
Voltage range		500V to 1kV	600V to a few kV	Less than 650V			
Large current		Better	Better	Good			
High speed switching charac	teristic	Good	Better	Excellent			
Ron·Qg *1		1 *2	0.63	0.05			
Switching loss		1 *2	0.2	0.1			

*1: index that represents switching performance. The lower the value, the better the switching performance. *2: Set Ron / Qg and switching loss of Si SJ MOSET to 1.

Si, SiC MOSFET vertical structure

Power devices have different power (VA) and operating frequency bands, depending on the materials and device

ROHM begins development of 150V GaN device as a device to complement SiC devices

GaN HEMT is expected as a device

with extremely high frequency operation in the medium voltage range

GaN Device Market and Challenges

ROHM develops technology that solves the problems and promotes the spread of GaN devices

EcoGaN[™] series GNE10xxTB

Note: As this is a developed product, specifications are subject to change without notice

Mainly Characteristics

- Voltage (V_{DS}): 150V
- Gate-source rated voltage: 8V
- Original mold package
 - High reliability
 - Good mountability
 - High heat dissipation
 - Low parasitic inductance
- High speed switching (>1MHz)
- Normally-off
- Reverse recovery time 0

Product Lineup

Increased Vg rating voltage (8V) provides better usability and could maximize the GaN benefit

Part No.	V _{DS} [V]	V _{GS} [V]	I _{DS} [A] Tc=25°C	R _{DS(on)} [mΩ]	Q _g [nC]	Package [mm]
New GNE1040TB	150	8	10	40	2.0	DFN5060 [5.0×6.0×1.0]
ST GNE1015TB			15	15	4.9	
☆ GNE1007TB			20	7	10.2	

EcoGaN[™] series GNE10xxTB

Note: As this is a developed product, specifications are subject to change without notice

Applications

- Data center server
- Base station (5G)
- Lidar
- D-class audio amplifier

Drone (LiDAR)

Schematics

© 2022 ROHM Co., Ltd.

Examples of Solutions

400W Isolated DC/DC Converter*1 (48V to 24V)

GaN HEMT solution including Gate driver and controller

LiDAR Reference Design*2

Simulation (Models & Web Sim)

- Simulation model equivalent to real devices
- Solution boards and reference circuit library for various power supply topologies
- Web based simulator

Reference Design / EVK

- Reference design with Thermal and EMC tested
- Device evaluation is possible under conditions close to real use cases.
- Provide various design files

Proposal as a Solution

Propose the best topology and parameter settings for power management ICs and power devices for various applications as a reference design

Driver IC

GaN HEMT

Laser Diode

*2: Planning

Provide solution and reference design to support customers

Future of GaN Device Development

ROHM will continue to develop next-generation GaN products in the future as well as its driver IC and controller IC

*Nano Pulse ControlTM are trademarks or registered trademarks of ROHM Co., Ltd. P. 9

ROHM

ROHM Co., Ltd. © 2022 ROHM Co., Ltd.

- The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products").
- If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.
- Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.
- The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products.
- ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties.
- ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.
- If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
- The content specified in this document is correct as of April 2022.

© 2022 ROHM Co., Ltd.