

ROHM's KX132-1211 & KX134-1211 Accelerometers for Industrial Applications

ROHM Semiconductor USA

© 2021 ROHM Semiconductor U.S.A., LLC

The Fourth Industrial Revolution is the ongoing automation of traditional manufacturing and industrial practices, using modern smart technology. (Source)

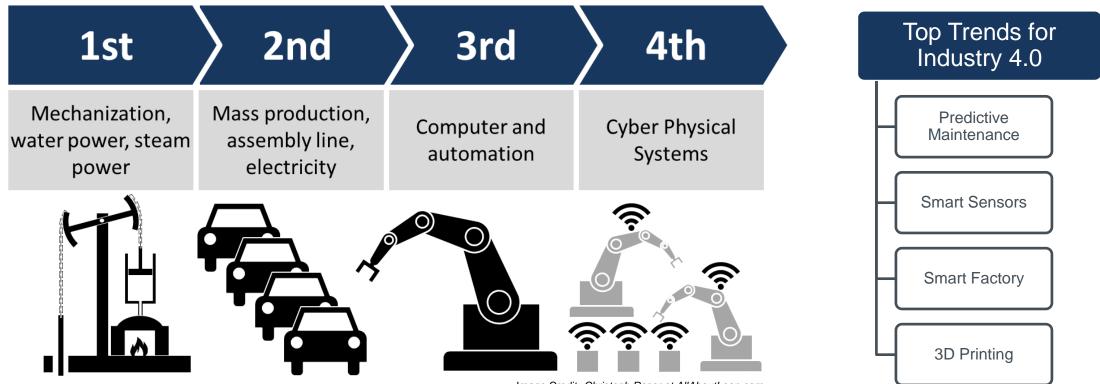
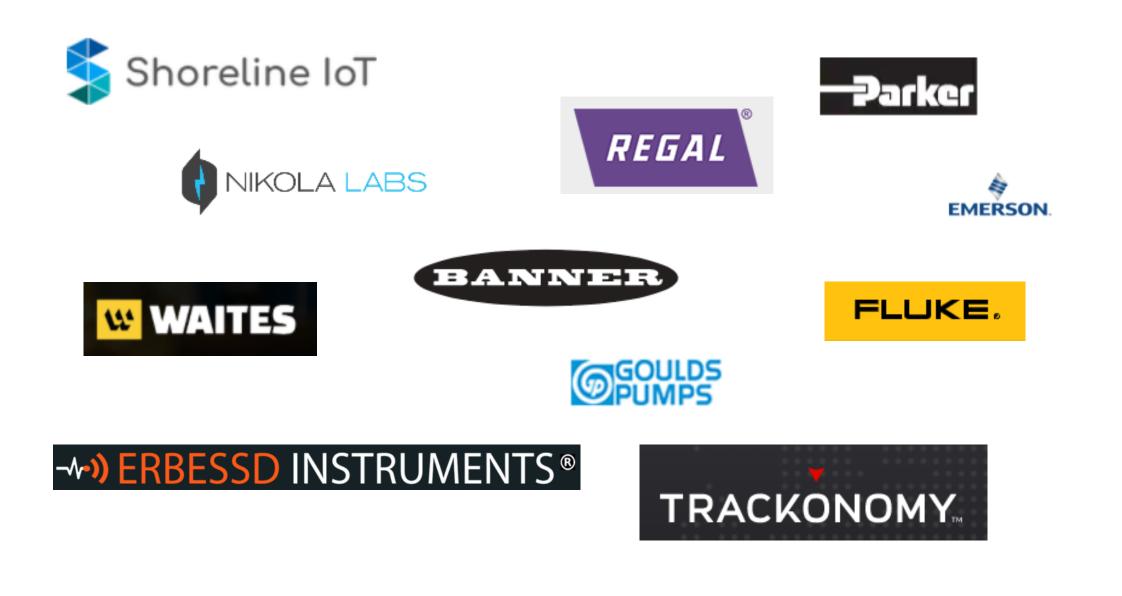
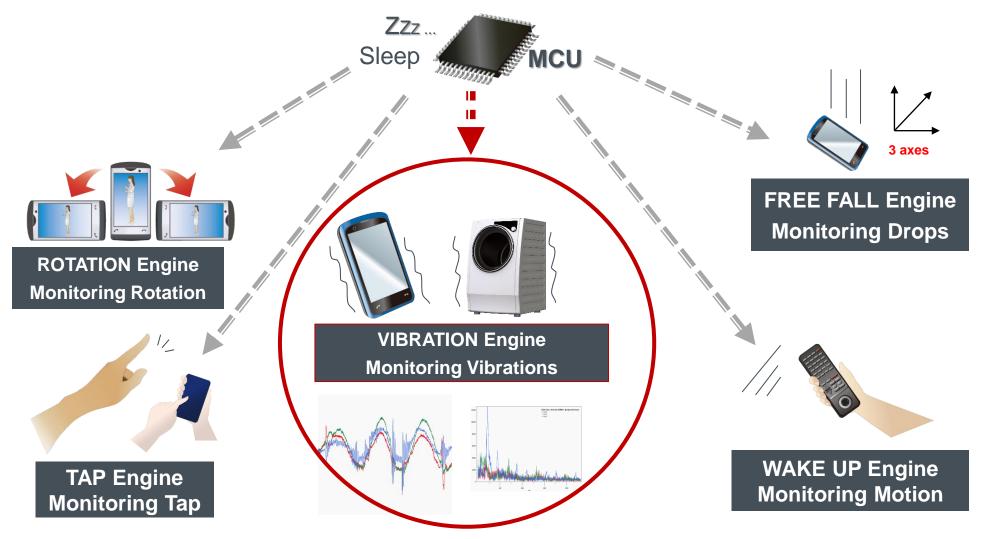



Image Credit: Christoph Roser at AllAboutLean.com

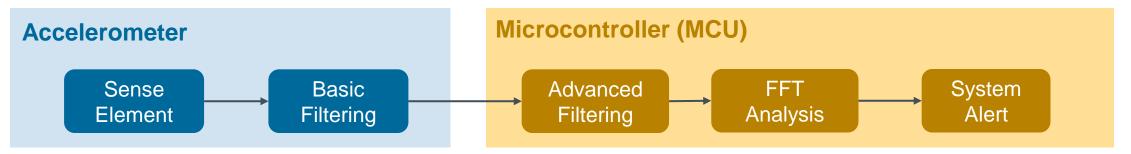
Industrial IoT – Market/Application Examples

KX132-1211 & KX134-1211 Accelerometers Key Features

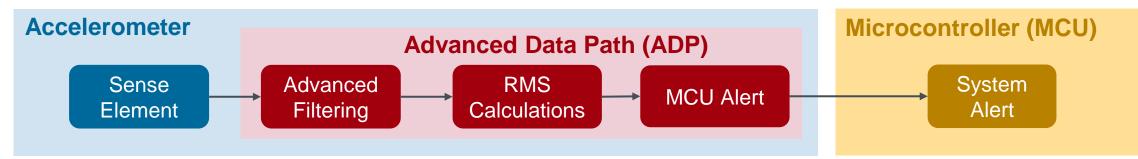

Description	Unit	KX132 & KX134	Description	Unit	KX132	KX134
Package	mm	2 x 2 x 0.9	G-Range	g	±2, 4, 8, 16	±8, 16, 32, 64
Digital I/F	-	SPI / I2C	0g Offset	mg	±25	±75
VDD	V	1.7 - 3.6	Sensitivity *2	counts/g	2048 (16g)	512 (64g)
Standby Current Low Power Current ¹ High Perf. Current ¹	μA	0.5 0.53 – 34 148 – 239	Signal Bandwidth	Hz	4200 (x,y) 2900 (z)	8200 (x) 8500 (y) 5600 (z)
Buffer Memory (FIFO)	Byte	512	(-3dB)			

¹ Current varies with e.g., Power mode, ODR, the average filter control settings and VDD.

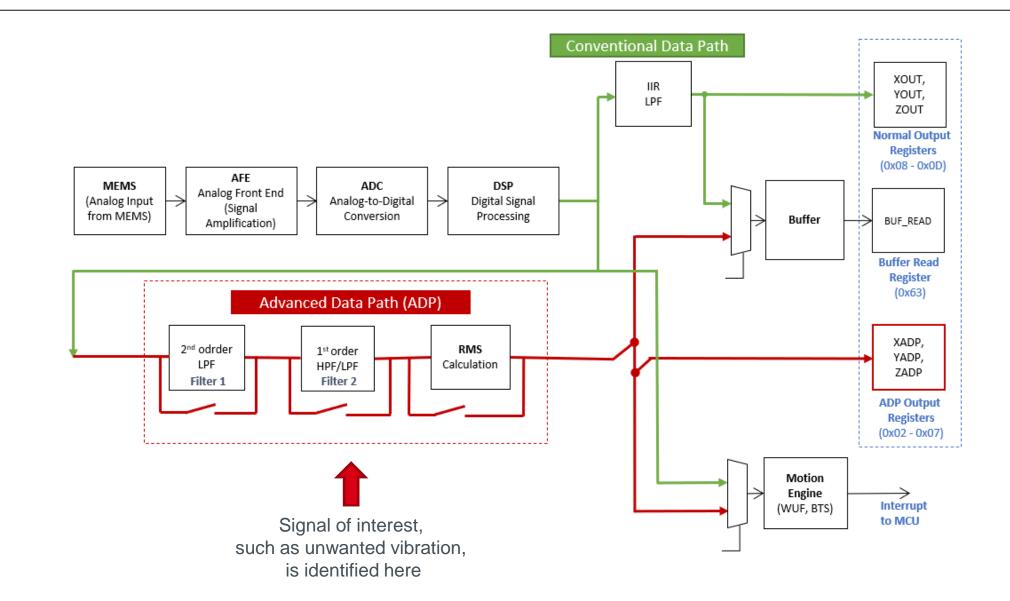
² Sensitivity varies with G-Range.



Embedded functions can monitor application conditions while MCU is asleep



Standard Accelerometer Products

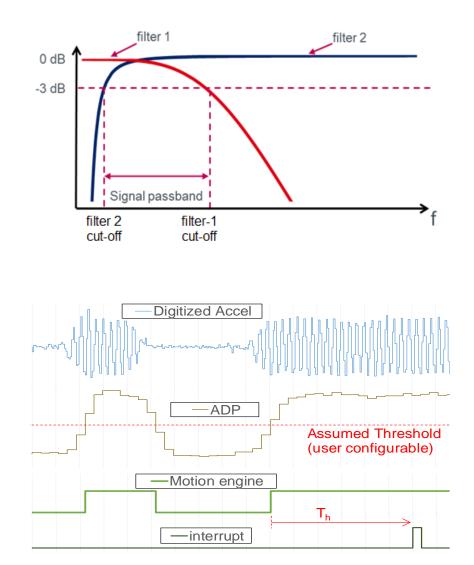


KX132-1211 / KX134-1211 with ADP

Take Away Message: KX132-1211 & KX134-1211 are designed to perform vibration analysis at a fraction of power compared to a microcontroller to perform a similar task!

Key Considerations

- There are many sources for motor failures. Some of the common ones are listed in the table on the right.
- Each failure mode can be identified by detecting a vibration at a certain frequency.


Vibration Sources Identification Guide

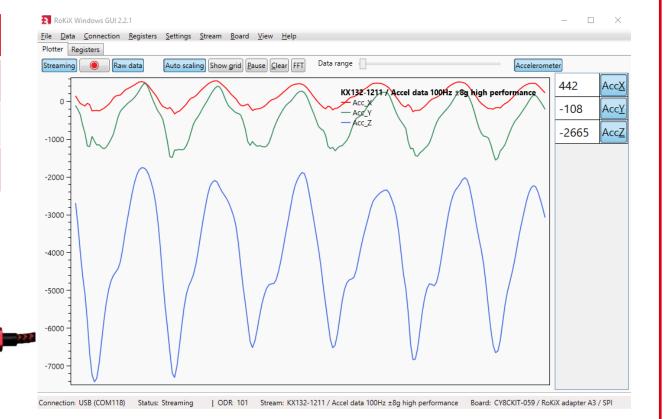
CAUSE	FREQUENCY	AMPLITUDE	PHASE	COMMENTS
Unbalance	1 x RPM	Highest in Radial Direction- Proportional to Unbalance	Single Mark (Steady)	A common cause of vibration.
Defective Anti- Friction Bearings	Very High-Often From 10 to 100 x RPM	Use Velocity	Unstable	Velocity readings are highest at defective bearing. As failure approaches, the amplitude of the velocity signal will increase and its frequency will decrease. Cage frequency is approximately 0.6 x RPM x number elements.
Misalignment of Coupling or Bearing	1, 2 or 3 x RPM	High Axial Axial 50% or more of Radial	Often 2, Sometimes 1 or 3	Use phase analysis to determine relative movement of machine or bearings. Use a dial indicator if possible. Often diagnosed as a bent shaft. Can be caused by misalignment of V belts.
Sleeve Bearing	1 x RPM	Not Large Use Displacement Mode Up to 6000 CPM	Single Reference Mark	May appear to be unbalanced. Shaft and bearing amplitude should be taken. If shaft vibration is larger than the bearing, vibration amplitude indicates clearance.
Bent Shaft	1 or 2 x RPM	High Axial	1 or 2	Similar to misalignment. Use phase analysis.
Defective Gears	High No. Gear Teeth x RPM	Radial	Unsteady	Use velocity measurement. Often affected by misalignment. Generally accompanied by side band frequency. Pitting, scuffing and fractures are often caused by torsional vibrations. Frequency sometimes as high as 1 million CPM or more.
Mechanical Looseness	2 x RPM Sometimes 1 x RPM	Proportional to Looseness	1 or 2	Check movement of mounting bolts in relation to the machine base. Difference between base and machine indicates amount of looseness.
Defective Drive Belts	1 or 2 x Belt Speed	Erratic	Use Strobe to Freeze Belt in OSC Mode	Calculate the belt RPM using: Belt RPM = Pulley Diameter x 3.141 Belt Length x Pulley RPM Look for cracks, hard spots, soft spots or lumps. Loose belt. Changes with belt tension.

Approach

• **Step 1:** The Advanced Data Path in KX132-1211 and KX134-1211 can be dynamically configured to detect only the frequencies of the interest through setup of an internal low-pass and high-pass filters as a band-pass filter. Thus, only the signals of interests (e.g., failures), will be detected, and the rest will be ignored. This allows a more robust detection with fewer false negatives.

Step 2 (optional): To estimate the amplitude of the vibration, the input signal can be routed via a configurable RMS engine where as many as 2 to 256 samples can be averaged. The resulting signal amplitude (and duration) can be used to compare against a configurable threshold to confirm if it exceeds it or not.

Description	ROHM P/N		
KX132-1211 Evaluation Board	KX132-1211-EVK-001		
KX134-1211 Evaluation Board	KX134-1211-EVK-001		
RoKiX Development Kit	RKX-EVK-001		



Evaluation Board

Easy to use evaluation board with all the signals accessible through the 14-pin header

Development Kit

Complete offering of the software, hardware, and firmware used for device evaluation purpose

RoKiX Windows GUI

Easy to use device evaluation software with graphical user interface supporting real time data display in time and frequency domains, configuration of all registers, test of digital engines, logging the data, and much more

Thank you!

ROHM SEMICONDUCTOR

© 2021 ROHM Semiconductor U.S.A., LLC