

FEDL22Q394-08

Issue Date: May. 17, 2021

ML22Q394/ML22Q394P

ADPCM Speech Synthesis LSI

■ GENERAL DESCRIPTION

ML22Q394/ML22Q394P is voice synthesis LSI with built-in Flash memory that stores speech data. This LSI includes edit ROM, ADPCM2 decoder, low pass filter and D-class speaker amplifier. Also, ML22Q394/ML22Q394P support the I²C interface.

By integrating all the functions required for voice output into a single chip, this LSI can be more easily incorporated in compact portable devices.

• Built-in memory capacity and maximum playback time:

Draduet name	DOM consoity	Maximum playback time (sec) (at f _s =8.0kHz)				
Product name	ROM capacity	4bitADPCM2	16bitPCM			
ML22Q394	692 Kbits	22.1	5.5			
ML22Q394P	032 10113	22.1	3.5			

Notes: ROM capacity shows the numerical value of only a voice area.

• Voice synthesis method: 4-bit ADPCM2

8-bit Nonlinear PCM 8-bit PCM, 16-bit PCM

Can be specified for each phrase.

•Speech ROM capacity ML22Q394/ML22Q394P: 692-Kbit Flash •Sampling frequency(Fs): 6.4 / 8.0 / 10.7 / 12.8 / 16.0 / 21.3 / 25.6 / 32.0 kHz

f_s can be specified for each phrase.

•Analog output: Built-in D-class amplifier

•CPU command interface: I²C interface •Maximum number of phrases: 30 phrases

•Disconnection detection function /Speaker pin short detection function

• Source oscillation frequency: 4.096 MHz(internal)

Power supply voltage: 2.0 to 5.5VFlash memory rewritable time: 80 times

• Operating temperature range: −40 to +85°C (ML22Q394)

 $-40 \text{ to } +105^{\circ}\text{C} \text{ (ML22Q394P)}$

• AEC-Q100 Compliant

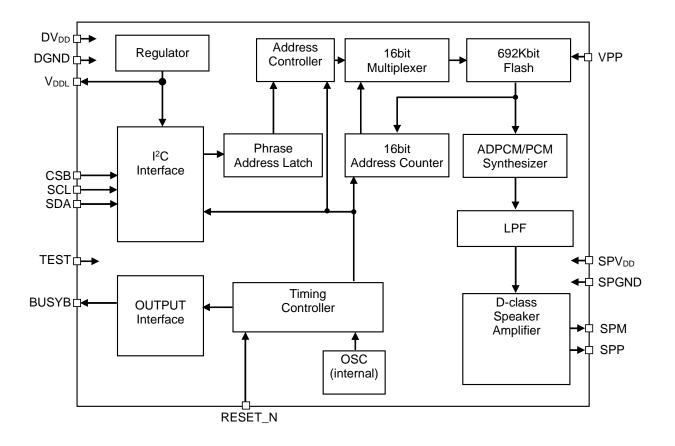
• Product name: 16-pin plastic SSOP

ML22Q394-NNNMB, ML22Q394-xxxMB(xxx: ROM code No.)

20-pin plastic TSSOP

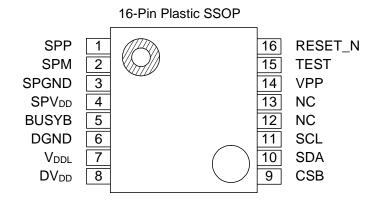
ML22Q394-NNNTD/ML22Q394-xxxTD ML22Q394P-NNNTD/ML22Q394P-xxxTD

(xxx: ROM code No.)



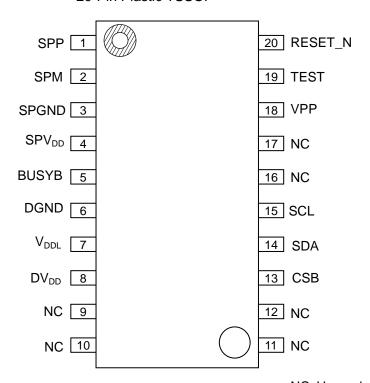
The following table shows the differences among the ML22Q374.

Parameter	ML22Q374	ML22Q374P	ML22Q394	ML22Q394P
CPU interface	Synchronous serial interface	←	I ² C	←
Memory capacity	692Kbit	←	←	←
Playback method	4-bit ADPCM2 8-bit nonlinear PCM 8-bit straight PCM 16-bit straight PCM	←	←	←
Maximum number of phrases	30	←	←	←
Sampling frequency (kHz)	6.4/12.8/25.6 8.0/16.0/32.0 10.7/21.3	←	←	←
Clock frequency	4.096MHz (internal oscillation)	←	←	←
Low-pass filter	FIR interpolation filter	←	←	←
Speaker driving amplifier	Built-in D-Class 1.0W $(8\Omega, SPV_{DD} = 5 V)$	Built-in D-Class 0.8W $(8\Omega, SPV_{DD} = 5 V)$	Built-in D-Class 1.0W $(8\Omega, SPV_{DD} = 5 V)$	Built-in D-Class 0.8W $(8\Omega, SPV_{DD} = 5 V)$
Edit ROM function	Yes	←	←	←
Volume control	32 levels	←	←	←
Silence insertion	Yes 20 ms to 1024 ms (4 ms/step)	←	←	←
Repeat function	Yes	←	←	←
Power supply voltage	2.0 V to 5.5 V	←	←	←
Operating temperature range	−40 to +85°C	-40 to +105°C	−40 to +85°C	−40 to +105°C
Package	16-pin SSOP 20-pin TSSOP	20-pin TSSOP	16-pin SSOP 20-pin TSSOP	20-pin TSSOP


■ BLOCK DIAGRAMs

 $ML22Q394-NNNMB/ML22Q394-xxxMB/\ ML22Q394-NNNTD/ML22Q394-xxxTD\ ML22Q394P-NNNTD/ML22Q394P-xxxTD$

■ PIN CONFIGURATIONs (TOP VIEW)


ML22Q394-NNNMB/ML22Q394-xxxMB

NC: Unused pin

ML22Q394-NNNTD/ML22Q394-xxxTD/ML22Q394P-NNNTD/ML22Q394P-xxxTD

20-Pin Plastic TSSOP

NC: Unused pin

■ PIN DESCRIPTION

Pin (20pin TSSOP)	Pin (16pin SSOP)	Symbol	I/O	Initial value (At the RESET_N Input)	Initial value (At standby)	Description
1	1	SPP	0	Hi-Z	Hi-Z	Positive(+) output pin of the speaker amplifier built-in
2	2	SPM	0	Hi-Z	Hi-Z	Negative(-) output pin of the speaker amplifier built-in.
3	3	SPGND	-		_	Ground pin for the speaker amplifier.
4	4	SPV_{DD}	_	_	_	Power supply pin for the speaker amplifier. Connect a bypass capacitor of 1µF or more between this pin and SPGND pin.
5	5	BUSYB	0	Hi-Z	1	BUSY output pin. When BUSYB use mode is set, the "L" level is outputted during playback. At the time of a disconnection detection function, when disconnection is detected, the "L" level is outputted. In addition, when BUSYB use mode is not set, the initial value is outputted.
6	6	DGND	_	_	_	Digital ground pin.
7	7	V_{DDL}	_	_	_	Regulator output pin for internal logic circuitry. Connect a capacitor of 10µF or more between this pin and DGND pin
8	8	DV_DD	_	_	_	Power supply pins for logic circuitry. Connect a capacitor of 1µF or more between this pin and DGND pin.
13	9	CSB	I	1	1	Chip select pin, when CSB use mode is set. At the "L" level, data input is available. When CSB use mode is not set, this pin should be fixed to "H" level od "L" level.
14	10	SDA	I	1 (*1)	1	Input pin for I ² C serial data. Use for setting the mode of write and writing address, writing data. This pin should be connected to pull-up resistor.
15	11	SCL	1	1	1	Clock input pin for I ² C serial interface. This pin should be connected to pull-up resistor.
18	14	VPP		_	_	Power supply pin for rewriting Flash memory. Fix this pin to DGND except when rewriting Flash memory.
19	15	TEST	I	0	0	Test pin. Fix this pin to a DGND level.
20	16	RESET_N	I	0	1	At the "L" level, the LSI enters initial state. After the power supply voltage is stable, drive this pin to "H" level.

^{*1:} The pin becomes the input mode at the time of reset.

■ ABSOLUTE MAXIMUM RATINGS

(DGND = SPGND = 0 V)

			<u> </u>	0. 0.1.
Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	DV_DD		-0.3 to +7.0	V
Speaker power supply voltage	SPV_{DD}		-0.3 to +7.0	V
Internal logic power supply voltage	V_{DDL}		-0.3 to +3.6	V
Flash power supply voltage	VPP	Ta=25°C	-0.3 to +9.5	V
Input voltage	VIN		-0.3 to DV _{DD} +0.3	V
Power dissipation	P _D		1	W
Output short-circuit current	I _{SC1}	except SPP pin, SPM pin	-12 to +11	mA
Catput short shoult carrent	I _{SC2}	SPP pin, SPM pin	300	mA
Storage temperature	T_{STG}	_	-55 to +150	°C

■ RECOMMENDED OPERATING CONDITIONS

(DGND = SPGND = 0 V)

			(· · -	
Parameter	Symbol	Condition	Range	Unit
Davier averality valte re	DV	_	2.0 to 5.5	V
Power supply voltage	DV_{DD}	Flash memory write	2.7 to 5.5	V
Speaker power supply voltage	SPV _{DD}	_	2.0 to 5.5	V
Flash power supply voltage	V_{PP}	Flash memory write	7.7 to 8.3	V
Flash memory rewrite cycles	N	_	80	_
	т.	ML22Q394	-40 to +85	
Operating temperature	T _{OP1}	ML22Q394P	-40 to +105	°C
	T _{OP2}	Flash memory write	0 to +40	

■ ELECTRICAL CHARACTERISTICS

DC Characteristics

 $DV_{DD} = SPV_{DD} = 2.0$ to 5.5 V, DGND = SPGND = 0 V, Ta = -40 to +85°C (ML22Q394) Ta = -40 to +105°C (ML22Q394P)

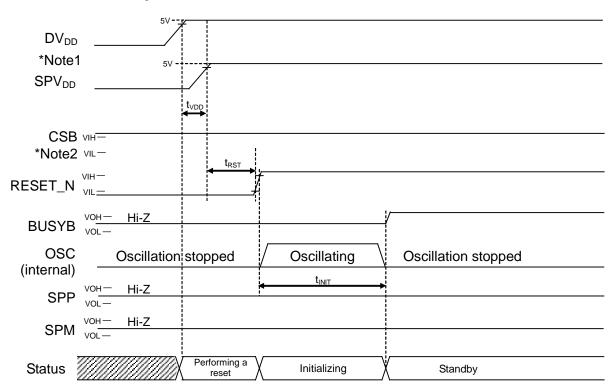
Parameter	Cumbal	Condition	Min.		105°C (ML22	
	Symbol	Condition		Тур.	Max.	Unit V
"H" input voltage	V _{IH}	_	0.7×DV _{DD}	_	DV _{DD}	
"L" input voltage	V _{IL}		0	_	0.3×DV _{DD}	V
"H" output voltage 1	V _{OH1}	$I_{OH} = -0.5 \text{ mA}$	DV _{DD} -0.5			V
"L" output voltage 1	V _{OL1}	$I_{OL} = 0.5 \text{ mA}$	_	_	0.5	V
"H" input current 1	I _{IH1}	$V_{IH} = DV_{DD}$	_	_	1	μA
"H" input current 2	I _{IH2}	$V_{IH} = DV_{DD}$ TEST pin	0.02	0.3	1.5	mA
"L" input current 1	I _{IL1}	V _{IL} = DGND	-1	_	_	μΑ
"L" input current 2	I _{IL2}	V _{IL} = DGND RESET_N pin	-1.5	-0.3	-0.02	mA
"L" input current 3	I _{IL3}	V _{IL} = DGND CSB Pull-up input	-250	-30	-2	μΑ
"H" output current 1	I _{ooH1}	$V_{OH} = DV_{DD} = SPV_{DD}$ (High impedance) BUSYB pin, SPP pin, SPM pin	_	_	1	μА
"H" output current 2	I _{ooH2}	$V_{OH} = DV_{DD}$ (Nch Open drain) BUSYB pin		l	1	μΑ
"L" output current 1	I _{ooL1}	V _{OL} = DGND = SPGND (High impedance) BUSYB pin, SPP pin, SPM pin	-1			μΑ
"L" output current 1	I _{ooL2}	V _{OL} = DGND (Pch Open drain) BUSYB pin	-1	l		μΑ
Supply current during playback	I _{DD1}	No output load, $DV_{DD} = 3.0V$	_	4.0	6.0	m ^
Supply current during playback	I_{DD2}	No output load, $DV_{DD} = 5.0V$	_	6.0	10 mA	
Awaiting command supply current	I _{DDC1}	$DV_{DD} = SPV_{DD} = 5.0V$	_	3.0	5.0	mΑ
	I _{DDS1}	Ta ≤ +40°C	_	0.5	3.0	
Standby supply current	I _{DDS2}	Ta ≤ +85°C	_	0.5	8.0	μΑ
	I _{DDS3}	Ta ≤ +105°C	_	0.5	16.0	
		Ta = −10 to +50°C	4.034	4.096	4.158	
Source oscillation frequency	fosc	Ta = -40 to +85°C	3.973	4.096	4.219	MHz
. ,		Ta = -40 to +105°C	3.973	4.096	4.219	

Characteristics of Analog Circuitry

 $DV_{DD} = SPV_{DD} = 2.0$ to 5.5 V, DGND = SPGND = 0 V, Ta = -40 to +85°C (ML22Q394) Ta = -40 to +105°C (ML22Q394P)

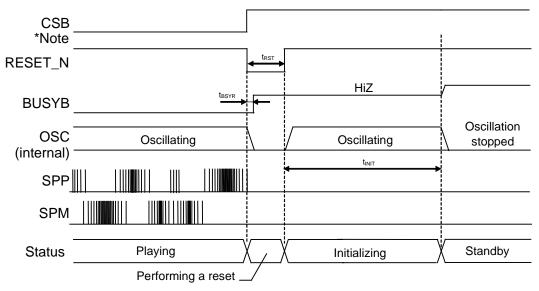
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SPM, SPP output load resistance	R _{LSP}	_	8	_	_	Ω
Speaker amplifier output power	D	SPV _{DD} =5.0V, Sin wave f=1kHz $R_{LSP} = 8\Omega$, THD \geq 10% (ML22Q394)	_	1.0	_	W
	P _{SPO}	SPV _{DD} =5.0V, Sin wave f=1kHz $R_{LSP} = 8\Omega$, THD \geq 10% (ML22Q394P)	_	0.8	_	W

AC Characteristics

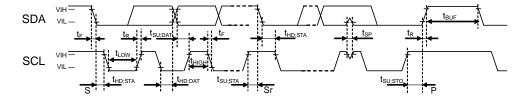

 $DV_{DD} = SPV_{DD} = 2.0$ to 5.5 V, DGND = SPGND = 0 V, Ta = -40 to +85°C (ML22Q394) Ta = -40 to +105°C (ML22Q394P)

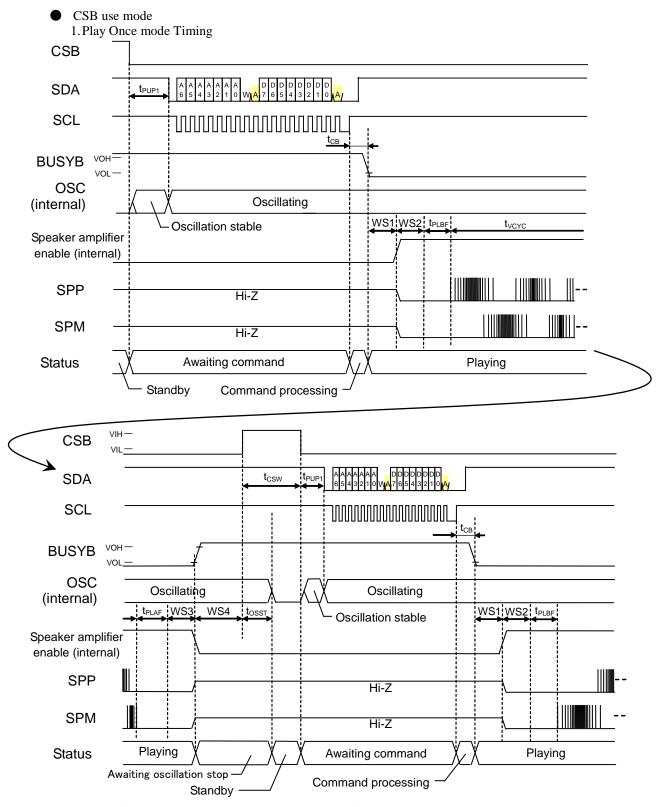
		<u></u>	1a = -40	0 to +105	°C (ML2	2Q394P)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
RESET_N input pulse width	t _{RST}	_	100	_	_	μS
Start time SPV _{DD} after starting DV _{DD}	t_{VDD}	_	0	_	_	ns
Initialization time after reset release	t _{INIT}	_	_	_	20	ms
BUSYB change time to "Hi-Z",after RESET_N					F00	
fall edge	t _{BSYR}	_	-	_	500	ns
SCL clock frequence	t _{SCL}	I ² C Fast mode	0	_	400	kHz
Hold time (repeated) START condition		I ² C Fast mode	0.0			_
After this period, the first clock pulse is generated.	t _{HD;STA}	I C Fast mode	0.6	_	_	μS
SCL "L" level pulse width	t _{LOW}	I ² C Fast mode	1.3	_	_	μS
SCL "H" level pulse width	t _{HIGH}	I ² C Fast mode	0.6	_	_	μS
Setup time for repeated START condition	t _{SU;STA}	I ² C Fast mode	0.6	_	_	μS
Data hold time: For I ² C bus devices	t _{HD;DAT}	I ² C Fast mode	0	_	0.9	μS
Data setup time	t _{SU;DAT}	I ² C Fast mode	100	_	_	ns
SDA and SCL signal rise time	t _r	I ² C Fast mode	20	_	300	ns
SDA and SCL signal fall time	t _f	I ² C Fast mode	20	_	300	ns
STOP condition setup time	t _{SU;STO}	I ² C Fast mode	0.6	_	_	μS
Bus free time between STOP condition and START		I ² C Foot mode	4.0			
condition	t _{BUF}	I ² C Fast mode	1.3	_	_	μS
Capacitive load for each bus line	Cb	I ² C Fast mode	_	_	400	pF
Noise margin at a "L" level in each device	\/	I ² C Fast mode	0.1×			V
connected (including hysteresis)	V_{nL}	i C Fast mode	DV_DD			V
Noise margin at a "H" level in each device	V_{nH}	I ² C Fast mode	0.1×			V
connected (including hysteresis)	V nH	1 C Fast mode	DV_DD			V
Pulse width of spikes which must be suppressed	+	I ² C Fast mode	0		50	ns
by the input filter	t _{sp}	1 0 1 dot mode			- 00	113
SDA reception possible time, after an oscillation	t _{PUP1}	_	2	_	_	ms
start	PUPT					1113
Playback time	t _{VCYC}	_	20	_	_	ms
BUSYB change time from "H" to "L", after a	t _{CB}	_	_	_	300	μS
command is inputted	СВ				500	μο
CSB "H" level pulse width	tcsw	CSB use mode	50		_	ns
Oscillation stop time, after playback	tosst	_			500	μS
Next command transmit time	t _{NCM}	_	l _	_	10	ms
In the case of the playback	INCIVI					1110
Next command transmit time	t _{CMS}	CSB use mode	50	_	_	ns
after shifting to a standby state	*CIVIO	002 000000				
Disconnection judging time	t _{DCD}	_	100	_	_	ms
by the DISCONNECT command	-505		1			
BUSYB change time from "L" to "H",after	t _{SD}	_	_	l —	80	μS
Over-current detection of a speaker amplifier			1	ļ		F
Processing time before playback start	t _{PLBF}	_	0.3		2.1	ms
Processing time after playback start	t _{PLAF}	_	0.15	<u> </u>	1.2	ms
Fade-out time at Change Immediately mode or	t _{FDO}	_	_	22	_	ms
Change Immediately Once mode	1,00		1			

Note: Output pin load capacitance = 45 pF


■ TIMING DIAGRAMS

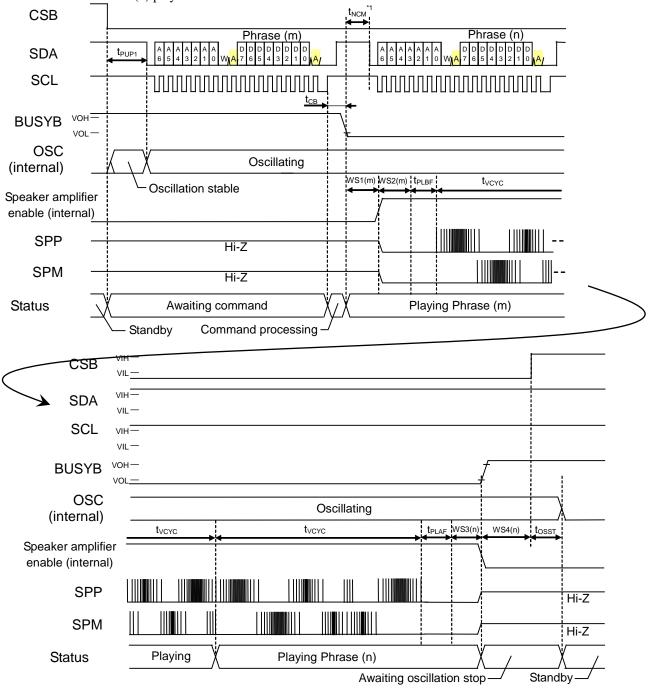
Power-On Timing


Note 1: Turn on DV_{DD} and SPV_{DD} simultaneously, or turn on SPV_{DD} after turning on DV_{DD} . Note 2: When CSB use mode is not set, this pin should be fixed to "H" level or "L" level.


• Power-Down Timing (At the RESET_N Input)

Note: When CSB use mode is not set, this pin should be fixed to "H" level or "L" level.

• I²C Command Interface Timing

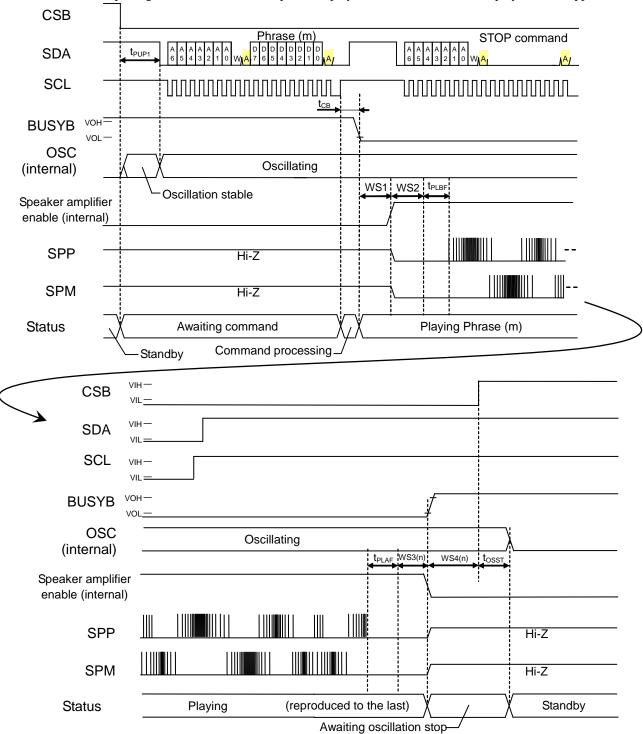


- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech LSI Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

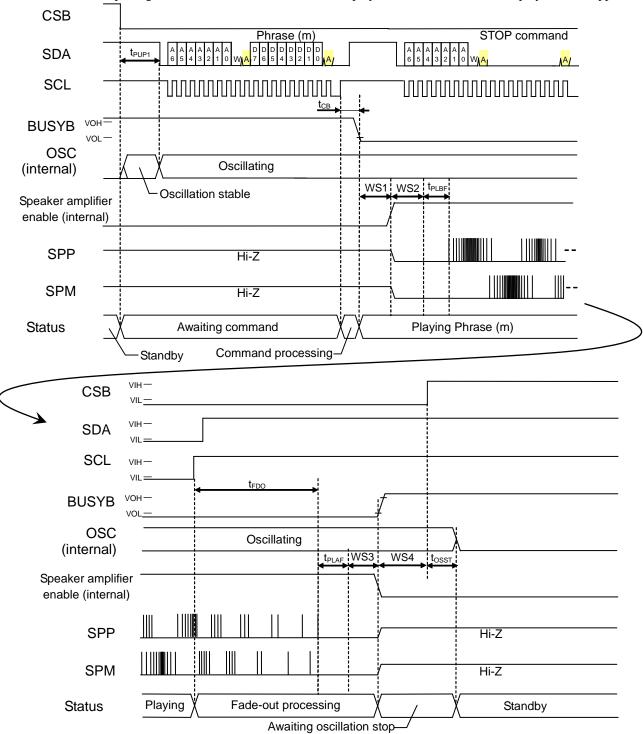
2. Scheduled Play Once mode and Scheduled Play mode Timing (Continuous Play)


After inputting the next PHRASEn command(Phrase(n)), a phrase(Phrase(m)) is played back to the last and the Phrase(n) playback is started.

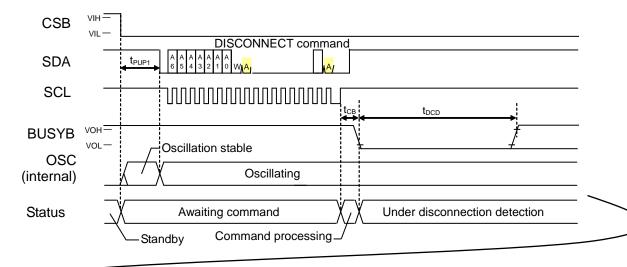
- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

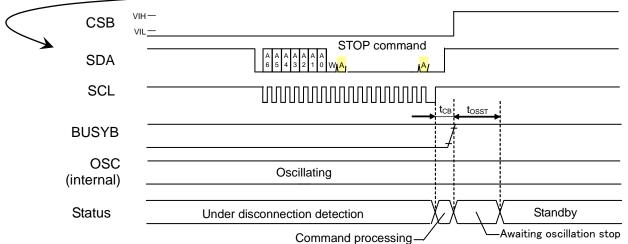

^{*1:} It is applied to the Scheduled Play Once mode. Start the next PHRASEn command within the tNCM. When it can't start, confirm the completion (BUSYB= "H") of the playback. Next, input the next command (PHRASEn command).

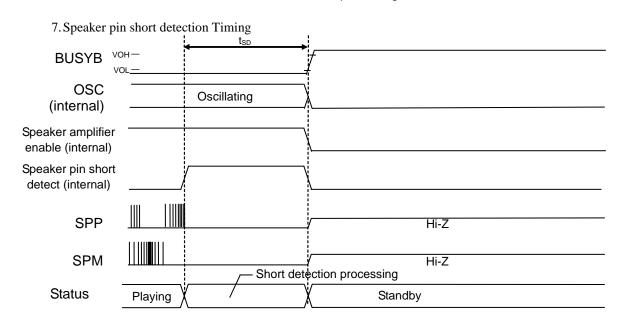
3. Change Immediately Once mode and Change Immediately mode Timing (Continuous Play)
After inputting the next PHRASEn command(Phrase(n)), fade-out of the playback(Phrase(m)) is carried out and the Phrase(n) playback is started.

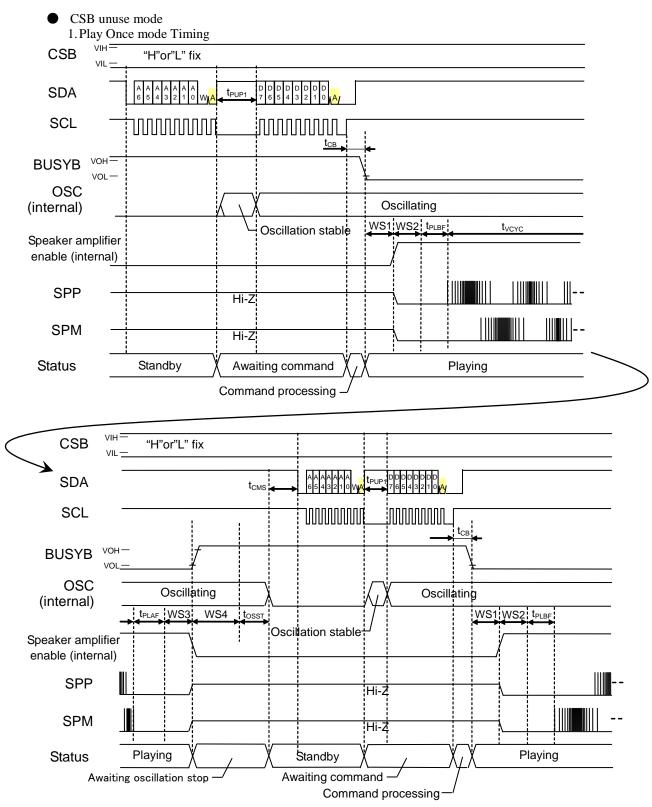

- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

4. Timing which stops the playback in Scheduled Play Once mode and Scheduled Play mode After inputting the STOP command, a phrase is played back to the last and the playback is stopped.

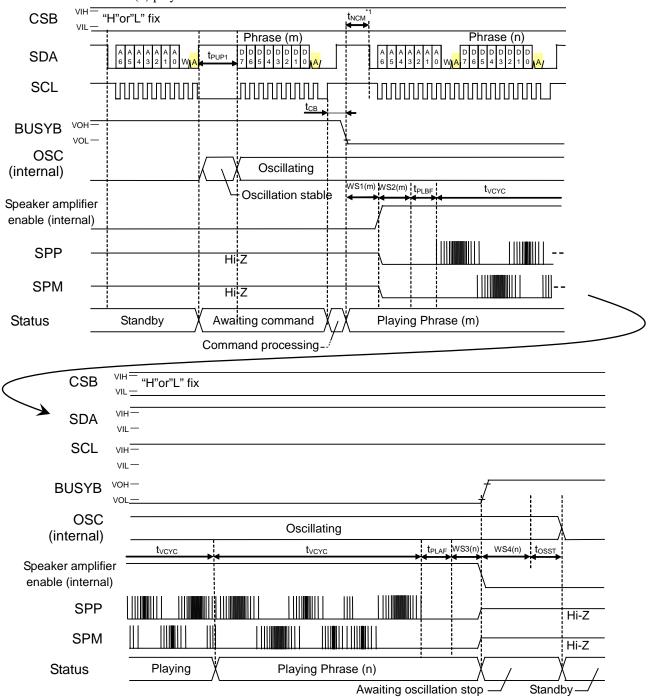

- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- Confirm the completion (BUSYB= "H") of the playback after input of a STOP command. Next, input the next command (PHRASEn command).
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"


5. Timing which stops the playback in Change Immediately mode and Change Immediately Once mode After inputting the STOP command, fade-out of the playback is carried out and the playback is stopped.



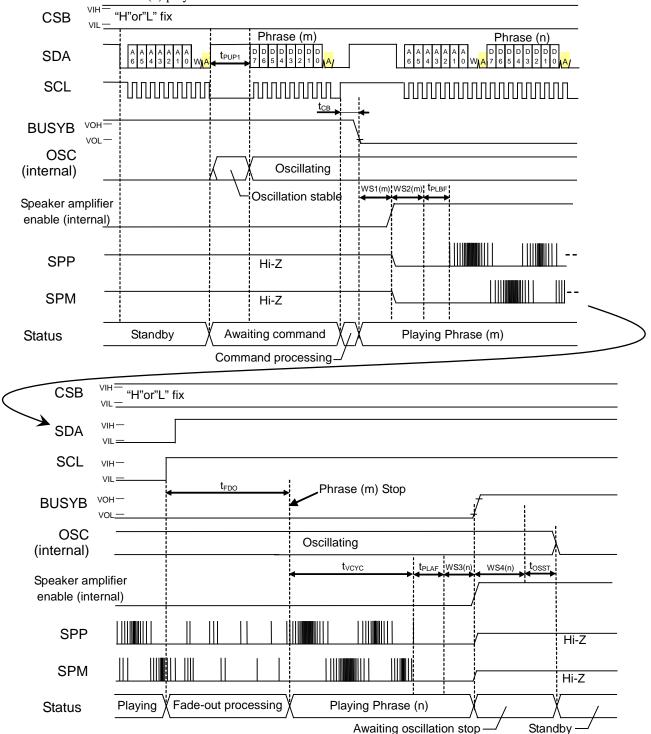

- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- Confirm the completion (BUSYB= "H") of the playback after input of a STOP command. Next, input the next command (PHRASEn command).
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

6. Disconnection detection Timing

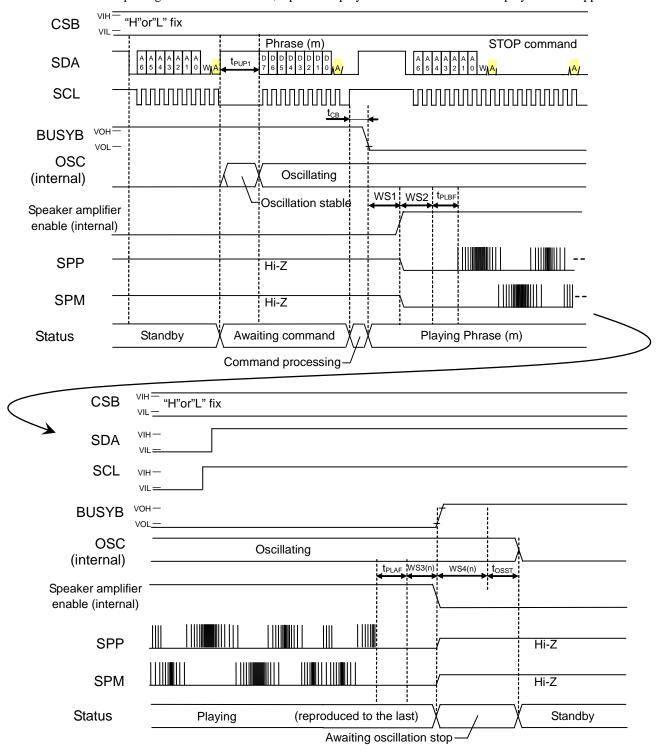


- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

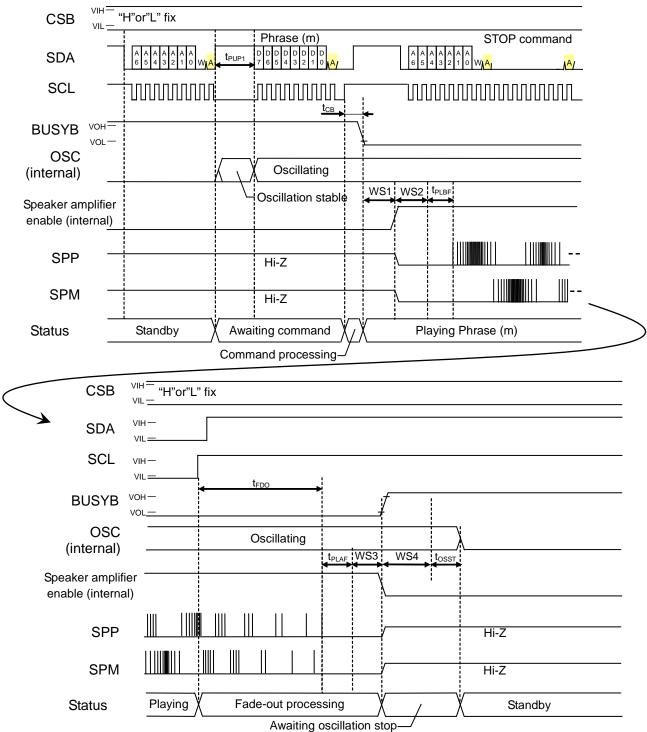
2. Scheduled play once mode and Scheduled play Timing (Continuous Play)


After inputting the next PHRASEn command(Phrase(n)), a phrase(Phrase(m)) is played back to the last and the Phrase(n) playback is started.

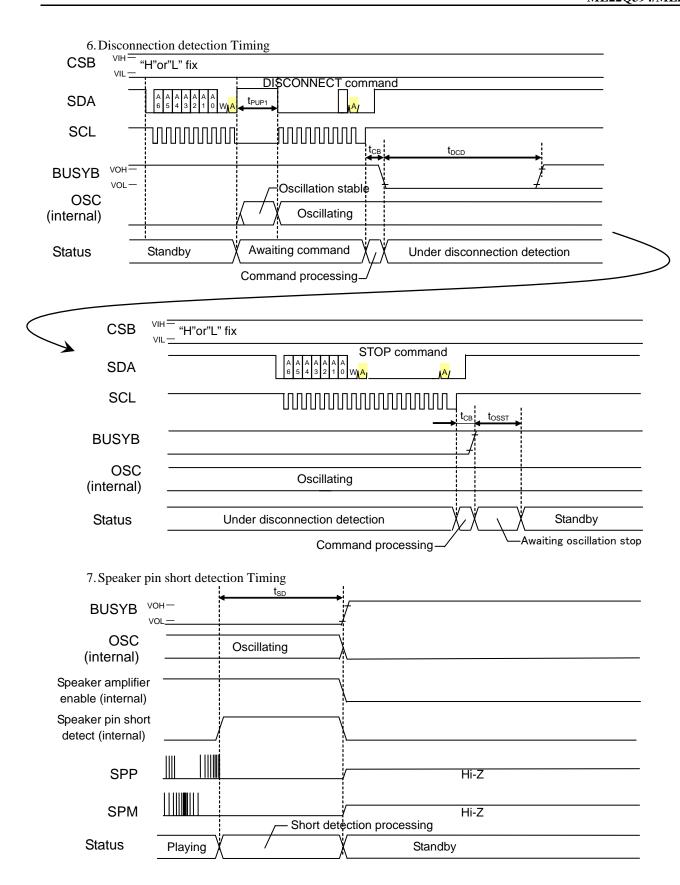
- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"


^{*1:} It is applied to the Scheduled Play Once mode. Start the next PHRASEn command within the tNCM. When it can't start, confirm the completion (BUSYB= "H") of the playback. Next, input the next command (PHRASEn command).

3. Change Immediately Once mode and Change Immediately Timing (Continuous Play)
After inputting the next PHRASEn command(Phrase(n)), fade-out of the playback(Phrase(m)) is carried out and the Phrase(n) playback is started.


- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

4. Timing which stops the playback in Scheduled Play Once mode and Scheduled Play mode After inputting the STOP command, a phrase is played back to the last and the playback is stopped.



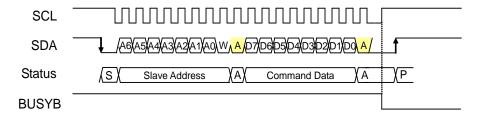
- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- Confirm the completion (BUSYB= "H") of the playback after input of a STOP command. Next, input the next command (PHRASEn command).
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

5. Timing which stops the playback in Change Immediately mode and Change Immediately Once mode After inputting the STOP command, fade-out of the playback is carried out and the playback is stopped.

- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- Confirm the completion (BUSYB= "H") of the playback after input of a STOP command. Next, input the next command (PHRASEn command).
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

■ FUNCTIONAL DESCRIPTION

■ I²C Command Interface


The I²C Interface built-in is a serial interface (: slave side) that is compliant with I²C bus specification. It supports Fast mode and enables data reception at 400 kbps. The SCL and SDA pins are used to input the command data. Pull-up resister should be connected to SCL pin and SDA pin.

For the master on the I^2C bus to communicate with this device (: slave), input the slave address with the first seven bits after setting the start condition. The slave address can be set using the Speech Utility. The eighth bit of slave address is used to set the direction (: write or read) of communication. If the eighth bit is "0" level, it is write mode from master to slave. And, if the eighth bit is "1" level, it is read mode from master.

The communication is made in the unit of byte. And acknowledge is needed for each byte.

The protocol of I²C communication is shown below.

- Command flow at data write START condition Slave address +W (0) Write address STOP condition
- Data write timing

The slave address can perform a 7-bit setup on the option screen of Speech Utility shown in figure.1.

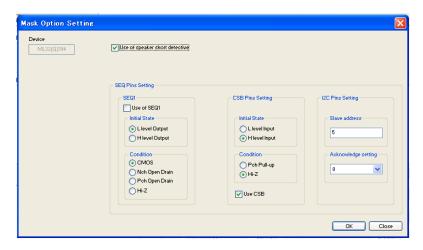


Figure .1 The option screen of Speech Utility

	Setup by Speech Utility						
A6	A5	A4	A3	A2	A1	A0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	1	
0	0	0	0	0	1	0	
0	0	0	0	0	1	1	
0	0	0	0	1	0	0	
			•				
			•				
			•				
1	1	1	1	1	1	0	
1	1	1	1	1	1	1	

For example, when it sets to "5" on the option screen of Fig. 1, a slave address is set to "0000101".

Command List

Each command is configured by the unit of byte (8-bit).

Command	D7	D6	D5	D4	D3	D2	D1	D0	Description
STOP	0	0	0	0	0	0	0	0	Stop command. The STOP command becomes effective except the phrase in Play Once mode and Scheduled Play Once mode.
DISCONNECT	0	0	0	0	0	0	0	1	Disconnection detection command. Please input the STOP command, after you use the DISCONNECT command.
PHRASE2	V2	V1	V0	0	0	0	1	0	
PHRASE3	V2	V1	V0	0	0	0	1	1	Phrase command
		•			•	•		•	Filiase confinanc
PHRASE31	V2	V1	V0	1	1	1	1	1	

• Voice Synthesis Algorithm

Four types of voice synthesis algorithm are supported. They are 4-bit ADPCM2, 8-bit non-linear PCM, 8-bit straight PCM and 16-bit straight PCM. Select the best one according to the characteristics of voice.

The following table shows key features of each algorithm.

Voice synthesis algorithm	Applied waveform	Feature
4-bit ADPCM2	Normal voice waveform	Up version of LAPIS Semiconductor's specific voice synthesis algorithm (: 4-bit ADPCM). Voice quality is improved.
8-bit Nonlinear PCM	Waveform including	Algorithm, which plays back mid-range of waveform as 10-bit equivalent voice quality.
8-bit straight PCM	high frequency signals	Normal 8-bit PCM algorithm
16-bit straight PCM	(sound effect, etc.)	Normal 16-bit PCM algorithm

Memory Allocation and Creating Voice Data

The ROM is partitioned into four data areas: voice (i.e., phrase) control area, test area, voice area, and edit ROM area. The voice control area manages the voice data in the ROM. It contains data for controlling the start/stop addresses of voice data for 1,024 phrases, use/non-use of the edit ROM function and so on.

The test area contains data for testing.

The voice area contains actual waveform data.

The edit ROM area contains data for effective use of voice data. For the details, refer to the section of "Edit ROM Function." The edit ROM area is not available if the edit ROM is not used.

The ROM data is created using a dedicated tool.

Configuration of ROM data

0x00000	Prohibition of use area
0x01FFF	(Fixed 64 Kbits)
0x02000	
max.0x0FBFF	Voice area 2
	Edit ROM area
0x0FFFF	Depends on creation
max.0x0FBFF	of ROM data.
0x0FC00 0x0FFFF	Test area
0x10000	Voice control area
0x101FF	(Fixed 4 Kbits)
0x10200	
	Voice area 1
<u>0x17FFF</u>	

Playback Time and Memory Capacity

The playback time depends on the memory capacity, sampling frequency, and the playback method. The equation to know the playback time is shown below. But this is not applied if the edit ROM function is used.

Playback time [sec] =
$$\frac{1.024 \times (\text{Voice area 1 + Voice area 2) [Kbits]}}{\text{Sampling frequency [kHz]} \times \text{Bit length}}$$

(Bit length is 4 at the 4-bit ADPCM2 and 8/16 at the PCM.)

Example) In the case that the sampling frequency is 8 kHz, algorithm is 4-bit ADPCM2, the playback time is approx. 22.1 seconds, as shown below.

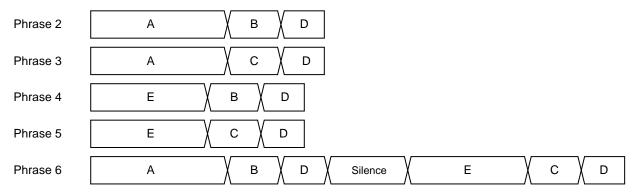
Playback time =
$$\frac{1.024 \times 692 \text{ [Kbits]}}{8 \text{ [kHz]} \times 4 \text{ [bits]}} \cong 22.1 \text{ [sec]}$$

Make the playback time of one phrase more than 20msec.

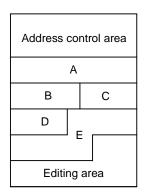
Edit ROM Function

The edit ROM function makes it possible to play back multiple phrases in succession. The following functions are set using the edit ROM function:

• Continuous playback: There is no limit to set the number of times of the continuous playback. It depends on


the memory capacity only.

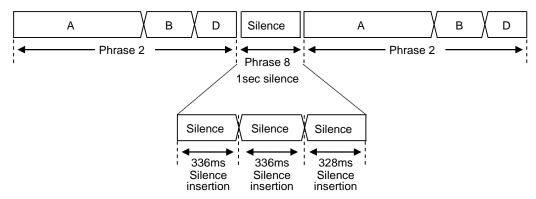
• Silence insertion function: 20ms to 1,024 ms


Note: Silent insertion time varies for ± 1 ms by the sampling frequency

It is possible to use voice ROM effectively to use the edit ROM function. Below is an example of the ROM structure, case of using the edit ROM function.

Example 1) Phrases using the Edit ROM Function

Example 2) Structure of the ROM that contents of Example 1 are stored



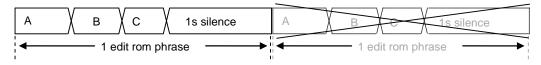
Notice of silence insertion function

If it is only silence phrase registered, please put in order three or more silence phrase. The phrase which is constituted from one or two of silence phrase does not playback.

Example 3) Phrase composition in the case of using silence insertion function

The phrase to playback (The phrase 2 is playbacked twice on both sides of 1 sec silence.)

1 sec which is constituted by the three silences is registered as the phrase 8.


• Notice of the silence insertion function, which a "Mute Time" was used for.

When "Mute Time" is used at the end of phrase, the continuous playback of that phrase isn't done.

Modify it to the sound which "Mute Time" was used for and the silence voice data in the case of the continuous playback mode.

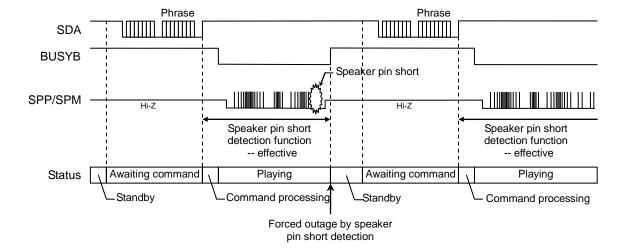
Example 4) Phrase coposition in the case of countinuous playback using silence insertion function

The case of continuous playback using Scheduled play mode.

When "Mute Time"(1s silence) is used at the end of phrase, the continuous playback of that phrase isn't done.

Change "Mute Time"(1s silence) to the combination of " "Mute Time"(980ms silence) and the silence voice data*1 of 20ms".

*1: The data that sound-less was made by the voice data are the silence voice data.


In the case of 20ms, it can be realized with 128Byte by choosing sampling frequency 6.4kHz, the 8bit PCM mode.

Speaker Pin Short Detection Function

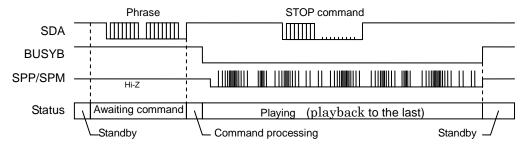
The speaker pin short detection function detect the short-circuit between SPP pin and SPM pin, or between SPP/SPM pin and GND during playback. When short-circuit of a speaker pin is detected, the playback will be stopped automatically, BUSYB pin will become "H" level, and LSI will become in a standby state.

In addition, this function can be set up with the option screen of Speech Utilty.

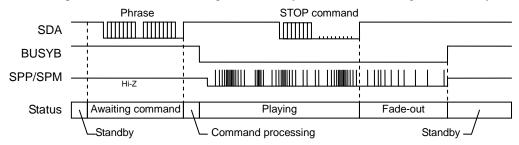
Please refer to a "Mask Option Setting setting item" for the option screen of Speech Utilty.

Description of Command Functions

1. STOP command

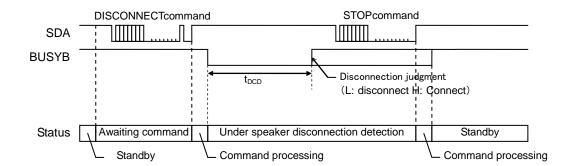

 command 	0	0	0	0	0	0	0	0

The STOP command is used to stop the playback. BUSYB pin will become "H", if the playback is stopped. The STOP command becomes effective except the phrase in Play Once mode and Scheduled Play Once mode. When you use Play Once mode or Scheduled Play Once mode, the STOP command is ignored.


When you use Scheduled Play mode, a phrase is played back to the last and the playback is stopped, after the STOP command is inputted. Furthermore, when you use Change Immediately Once mode or Change Immediately mode, fade-out of the playback is carried out and the playback is stopped, after the STOP command is inputted.

Confirm the completion (BUSYB= "H") of the playback after input of a STOP command. Next, input the next command (PHRASEn command).

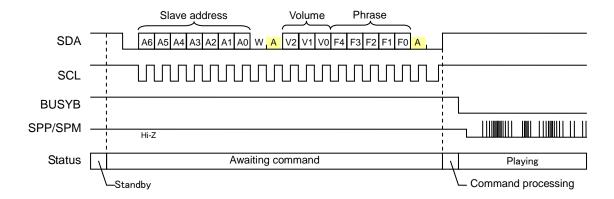
• STOP command operation in the case of Scheduled Play mode


• STOP command operation in the case of Change Immediately Once mode or Change Immediately mode

2. DISCONNECT command

 command 	0	0	0	0	0	0	0	1

The DISCONNECT command is used to diagnose whether the speaker is disconnected or not. When the speaker is disconnected, BUSYB pin outputs "L". Please input the STOP command, after you use the DISCONNECT command.



3. PHRASEn (n = 2 to 31) command

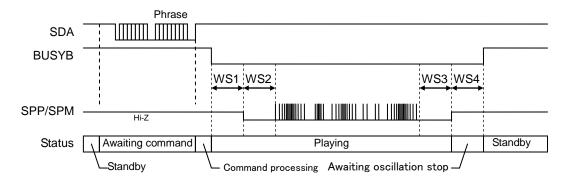
 command 	V2	V1	V0	F4	F3	F2	F1	F0

The PHRASEn (n = 2 to 31) command is used to start playback phrase. When you create the voice data, please set up the phrase address using Speech Utility.

The timing in the case of the playback a phrase address below is shown.

The PHRASEn(n=2 to 31) command can perform a volume setup. When V2-V0 is "000", the volume setup of voice cntrol area is used.

V2	V1	V0	Volume [dB]
0	0	0	The volume setup of voice control area is used.*1
0	0	1	+2.98
0	1	0	+1.78
0	1	1	0
1	0	0	-2.25
1	0	1	-5.28
1	1	0	-9.99
1	1	1	-21.04


*Note 1: For edited phrase, volume set for each registered phrase is used

Each phrase can set up the wait time before and after playback, a volume setup, and playback mode using Speech Utility.

Figure .2 The option screen for every phrase of Speech Utility

1) Wait time setting before and after playback (WS1, WS2, WS3, WS4) Each phrase can set up the wait time before and after playback. Since it is an option setup, change will be impossible once it sets up.

WS1: Time after inputting a phrase address, until SPP/SPM pins are enabled.

WS2: Time after SPP/SPM pins are enabled, until playback is started.

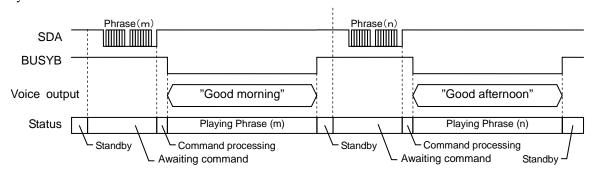
WS3: Time after playback is completed, until SPP/SPM pins are disabled.

WS4: Time after SPP/SPM pins are disabled, until it will be in a standby state.

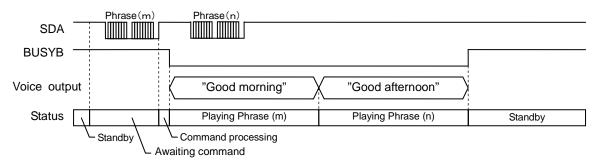
WS1-WS4 can be arbitrarily set up between 0 to1020ms (4ms unit).

2) Volume setup (Volume)

Each phrase can set up the volume setup. Since it is an option setup, change will be impossible once it sets up.

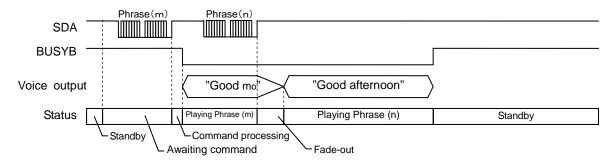

Value [hex]	Volume [dB]	Value [hex]	Volume [dB]	Value [hex]	Volume [dB]
00h	+2.98	0Ah	-0.41	15h	-6.87
01h	+2.70	0Bh	-0.83	16h	-7.79
02h	+2.40	0Ch	-1.28	17h	-8.82
03h	+2.10	0Dh	-1.75	18h	-9.99
04h	+1.78	0Eh	-2.25	19h	-11.34
05h	+1.45	0Fh	-2.77	1Ah	-12.94
06h	+1.11	10h	-3.34	1Bh	-14.90
07h	+0.76	11h	-3.94	1Ch	-17.44
08h	+0.39	12h	-4.58	1Dh	-21.04
09h	+0.00	13h	-5.28	1Eh	-27.31
·		14h	-6.04	1Fh	OFF

3) Playback mode setup

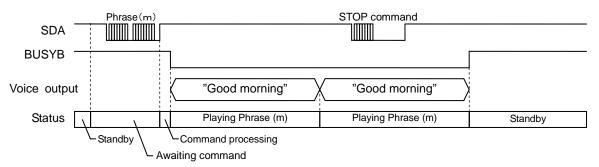

Playback mode can be set up for every phrase. Since it is an option setup, change will be impossible once it sets up.

Playback mode	Operation
Play Once	This mode is playback once. All the commands become invalid during playback.
Scheduled Play Once	When the following phrase is inputted into playback, after playback of the present phrase is completed, playback of th following phrase starts. Even if STOP command is inputted during playback, it will be ignored.
Change Immediately Once	When the following phrase is inputted into playback, playback of the present phrase is ended on the way, and playback of the following phrase starts.
Scheduled Play	The playback continues until the following command will be inputted, if playback starts. When the following command is inputted into playback, after playback of the present phrase is completed, the following command is executed.
Change Immediately	The playback continues until the following command will be inputted, if playback starts. When the following phrase is inputted into playback, playback of the present phrase is ended on the way, and playback of the following phrase starts.

· Play Once mode

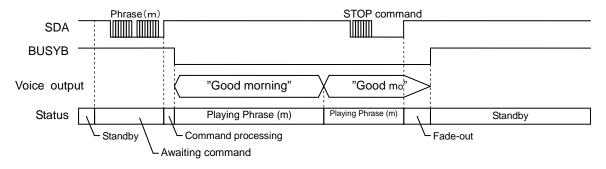


· Scheduled Play Once mode



Start the next PHRASEn command within the tNCM. When it can't start, confirm the completion (BUSYB= "H") of the playback. Next, input the next command (PHRASEn command).

· Change Immediately Once mode



· Scheduled Play mode

Confirm the completion (BUSYB= "H") of the playback after input of a STOP command. Next, input the next command (PHRASEn command).

· Change Immediately mode

Confirm the completion (BUSYB= "H") of the playback after input of a STOP command. Next, input the next command (PHRASEn command).

Mask Option Setting

Figure .3 The Mask Option Setting screen of Speech Utility

Explanation of each option is shown in the following page.

ML22Q394/ML22Q394P

	Parameter	Function	Explanation		
(1) Us	e of speaker short detective	ON or OFF selection of a short	If a check box is turned on, a short detection circuit will		
		detection function	become effective.		
	SEQ Pins Setting	Interface setup			
	SEQ1	BUSYB setup			
	(2) Use SEQ1	Use or unuse selection of	If a check box is turned on, a BUSYB pin can be used. If		
		BUSYB	a check box is turned off, a BUSYB pin does not		
			function but the fixed output of the initial value is carried		
			out.		
	(3) Initial State	Initial output level selection of	The initial value of a BUSYB pin at voice stop can be		
		BUSYB	chosen.		
	L Level Output	L Level Output	The "L" level is outputted at voice stop. "H" level is		
			outputted at speech playback.		
	H Level Output	H Level Output	The "H" level is outputted at voice stop. "L" level is		
			outputted at speech playback.		
	(4) Condition	BUSYB condition setup	BUSYB condition can be chosen.		
	CMOS	CMOS output	a BUSYB pin become a CMOS output. <u>Usually, please</u>		
			use this setup.		
	Nch Open Drain	Nch Open Drain output	The "L" level is outputted at the "L" level. High		
			impedance is outputted at the H" level.		
	Pch Open Drain	Pch Open Drain output	The "H" level is outputted at the "H" level. High		
			impedance is outputted at the L" level.		
	Hi-Z	High impedance output	High impedance is always outputted. When BUSYB use		
	OOD Dive Oothing	000	mode is set up, please do not use it.		
	CSB Pins Setting	CSB setup	TI : ::: I I COOD : I I I I		
	(5) Initial State	CSB input level	The initial value of a CSB pin at standby can be chosen.		
	L Level Input	L Level Input	The "L" level is inputted at standby.		
	H Level Input	H Level Input	The "H" level is inputted at program operation.		
	(6) Condition	CSB condition setup	CSB condition can be chosen.		
	Pch Pull-up	Pch Pull-up input	Built-in Pull-up resistance can be used.		
	Hi-Z	High impedance input	It is used at CMOS connection. <u>Usually, please use this</u>		
	(7) 11 000		setup.		
	(7) Use CSB	Use or unuse selection of CSB	If a check box is turned on, the interface using a CSB		
			pin is attained.		
			If a check box is turned off, two terminal interface of SCL and SDA is attained.		
	I I ² C Pins Setting	I ² C setup	The I ² C condition can be set up.		
	(8) Slave address	Slave address setting	7-bits slave address can be set up.		
	(9) Acknowledge Setting	Acknowledge level setup	The level of the acknowledge signal outputted at the		
	(a) Acknowledge Setting	Ackilowieuge level setup	time of termination of reception can be set up.		
			ume or termination or reception can be set up.		

■ The pull-up resistor value of SCL and SDA pin

The pull-up resistor value of SCL and SDA pin is computed as follows.

• Minimum Value (R_P.min):

 $\underline{R_P.min} = (\underline{DV_{DD}-V_{OL}.max})/\underline{I_{OL}}$

- DV_{DD}: Power supply voltage
- V_{OL}.max: The maximum output "L" level of a driver
- I_{OL}: Sink current of a driver

For example, in this case of $DV_{DD}=5V$, V_{OL} .max=0.4V, and $I_{OL}=3mA$, it is calculated as follows.

 $\underline{R_P.min} = (5V - 0.4V)/3mA \cong 1.5k\Omega$

• Maximum Value (R_P.max):

 $\underline{R_{P}.max} = 300 \text{ns/} [Maximum Capacitance of a Bus (F)]$

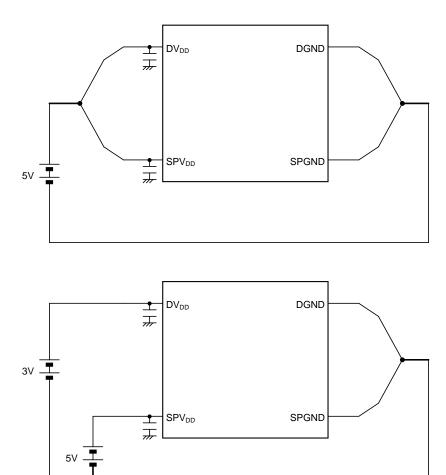
For example, in this case of the maximum capacitance of a bus is 100pF, it is calculated as follows.

 R_P .max = 300ns/100pF \cong 3.0k Ω

\blacksquare Termination of the V_{DDL} Pin

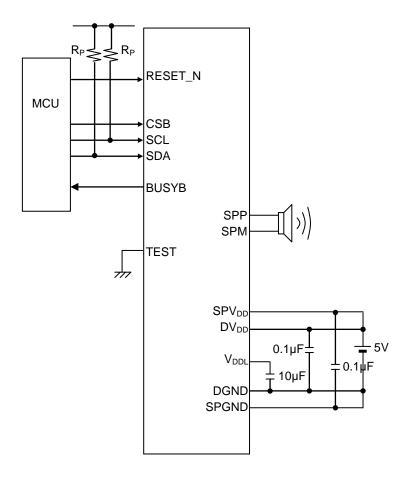
The V_{DDL} pin is the regulator output that is power supply pin for the internal logic circuits. Connect a capacitor between this pin and the ground in order to prevent noise generation and power fluctuation.

The recommended capacitance value is shown below. However, it is important to evaluate and decide using the own board. Also, start the next operation after each output voltage is stabilized.

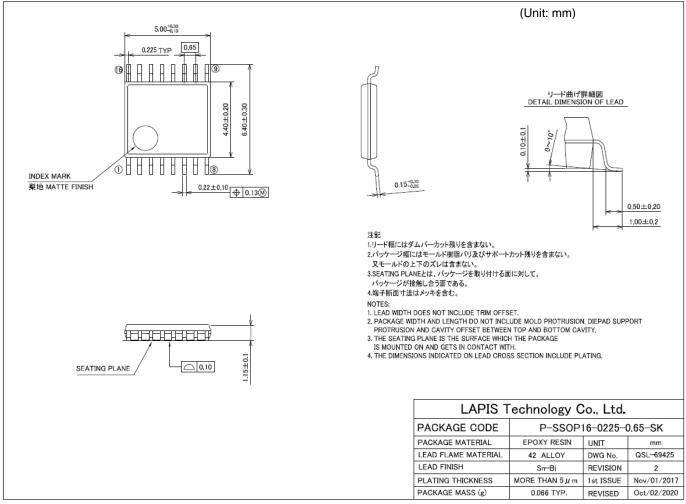

Pin	Recommended capacitance value	Remarks
V_{DDL}	10 μF ±20%	The larger the connection capacitance, the longer the settling time.

■ POWER SUPPLY WIRING

The power supplies of this LSI are divided into the following two:

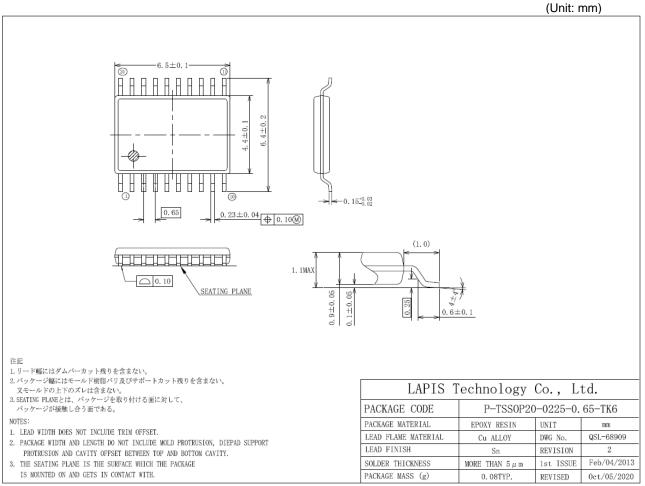

- \bullet Power supply for logic circuitry (: DV_{DD})
- Power supply for speaker amplifier (: SPV_{DD})

The example of power connection is shown below.



- Turn on DV_{DD} and SPV_{DD} simultaneously, or turn on SPV_{DD} after turning on $\text{DV}_{\text{DD}}.$
- Turn off DV_{DD} and SPV_{DD} simultaneously, or turn off DV_{DD} after turning on SPV_{DD} .

■ APPLICATION CIRCUIT


■ PACKAGE DIMENSIONS (16-pin plastic SSOP)

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

■ PACKAGE DIMENSIONS (20-pin plastic TSSOP)

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

■ Revision History

		Page		
Document No.	Date	Previous	Current	Description
		Edition	Edition	
FEDL22Q394FULL-01	Oct. 23, 2012	-	ı	Final edition 1
FEDL22Q394-02	Jun. 06, 2014	_	27	Add the notice of silence insertion function
		8	8	Modify the explanation of t _{NCM} .
		12,18	12,18	Add the notice of the next PHRASEn command input.
		13,19	13,19	Delete the restriction of t _{NCM} .
		14,20	14,20	Delete the restriction of t _{NCM} .
		,=0	,=0	Add the notice of the next PHRASEn command input.
FEDL22Q394-03	Mar. 16, 2015	15,21	15,21	Delete the restriction of t _{NCM} . Add the notice of the next PHRASEn command input.
		25	25	·
		25	25	Add the notice of minimam playback time.
		27	27	Add the notice of the silence insertion function.
		29	29	Add the notice of the next PHRASEn command input.
		33-34	33-34	Add the notice of the next PHRASEn command input.
FEDL22Q394-04	Apr. 01, 2016	2	2	Deleted ML22330/ML22Q330 and ML22Q384.
FEDL22Q394-05	May. 11, 2016	7	7	Correct the specification of I _{IL3} .
		2	2	Modify the Sampling frequency.
		5	5	Add the note.
FEDL22Q394-06	Oct. 31, 2017	9	9	Time chart of Power-on Timing is modified.
1 LDL22 Q00+ 00	001. 01, 2017	12,13,	12,13,	Time chart of tVCYC is modified.
		18,19	18,19	
		36	36	Modify the Initial output level selection of BUSYB.
		1	1	Add 20pin TSSOP and ML22Q394-NNN/ML22Q394-xxxTD
				Add Plan to qualify AEC-Q100
		2	2	Add 20pin TSSOP
FEDL22Q394-07	Jul. 31, 2019	3	3	Add ML22Q394-NNN/ML22Q394-xxxTD
1 LDL22 000+ 07	001. 01, 2010	4	4	Add 20pin TSSOP
		5	5	Add 20pin assign
		33	33	Add 16pin SSOP
		34	34	Add pakage dimensions to 20 PIN TSSOP
				Add ML22Q394P to Product name
				Add ML22Q394P to Operating temperature range
		1	1	Modify AEC-Q100 Plan to AEC-Q100 Compliant
				Add ML22Q394P-NNNTD/ML22Q394P-xxxTD to Product
				name
		2	2	Add ML22Q374P, ML22Q394P to a table
		3	3	Add ML22Q394P-NNNTD/ML22Q394P-xxxTD
		4	4	Add ML22Q394P-NNNTD/ML22Q394P-xxxTD to 20-Pin Plastic TSSOP
FEDL22Q394-08	May. 17, 2021			Add ML22Q394P to Operating temperature of
1 LDL22Q334-00	Way. 17, 2021	6	6	RECOMMENDED OPERATING CONDITIONS
				Add ML22Q394P to Operating Condition
		_	_	Add Ta \leq +105°C to Standby supply current, Ta = -40 to
		7	7	+105°C to Source oscillation frequency
				Add ML22Q394P to Speaker amplifier output power
		8	8	Add ML22Q394P to Operating Condition
		31	31	Add the note of the volume
		40	40	Modify P-SSOP16-0225-0.65-UK to
		40	40	P-SSOP16-0225-0.65-SK

Notes

- 1) The information contained herein is subject to change without notice.
- When using LAPIS Technology Products, refer to the latest product information (data sheets, user's manuals, application notes, etc.), and ensure that usage conditions (absolute maximum ratings, recommended operating conditions, etc.) are within the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. You are responsible for evaluating the safety of the final products or systems manufactured by you.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology or any third party with respect to LAPIS Technology Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore LAPIS Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) The Products are intended for use in general electronic equipment (AV/OA devices, communication, consumer systems, gaming/entertainment sets, etc.) as well as the applications indicated in this document. For use of our Products in applications requiring a high degree of reliability (as exemplified below), please be sure to contact a LAPIS Technology representative and must obtain written agreement: transportation equipment (cars, ships, trains, etc.), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems, etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us. Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS Technology does not warrant that such information is error-free and LAPIS Technology shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 8) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 9) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act..
- 10) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or LAPIS Technology's Products.
- 11) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.

(Note) "LAPIS Technology" as used in this document means LAPIS Technology Co., Ltd.

Copyright 2020 - 2021 LAPIS Technology Co., Ltd.

LAPIS Technology Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan https://www.lapis-tech.com/en/