

FEDL22321-03

Issue Date:Jun 29, 2022

ML22Q321/321

ADPCM Speech Synthesis LSI

GENERAL DESCRIPTION

The ML22321/ML22Q321, which include mask ROM and Flash memory for storing speech data, respectively, are speech synthesis LSIs which can control speech playback utilizing a serial interface.

It includes speaker amplifier and 16bit DA Converter, so it is possible to have high quality sound and solution for playback with 1chip.

• Playback Time

• Speech ROM capacity

Product Name	Capasitance	Maximum Playback time(s) (Fsam=8.0kHz)						
1 Todaet Tame	of ROM(bit)	HQ-ADPCM	4bitADPCM2	16bitPCM				
ML22Q321/321	920K	36.8	29.4	7.3				

• Speech system: 4-bit ADPCM2

8-bit/16-bit straight PCM system 8-bit nonlinear PCM system

HQ-ADPCM(*1)

(can be specified for each phrase)
ML22321: 920-Kbit Mask ROM

ML22Q321: 920-Kbit Flash

• Sampling frequency: 8.0/16.0/32.0kHz, 6.4/12.8/25.6 kHz/, 10.7/21.3 kHz

(fsam can be specified in units of phrase)

• Volume control function: 32 steps by an analog value input and ADC (OFF is included)

Analog output: Built-in 16-bit DA converter
 Interface: Synchronous serial interface

MSB first, LSB first, or default level of synchronous clock is selectable based on ROM data

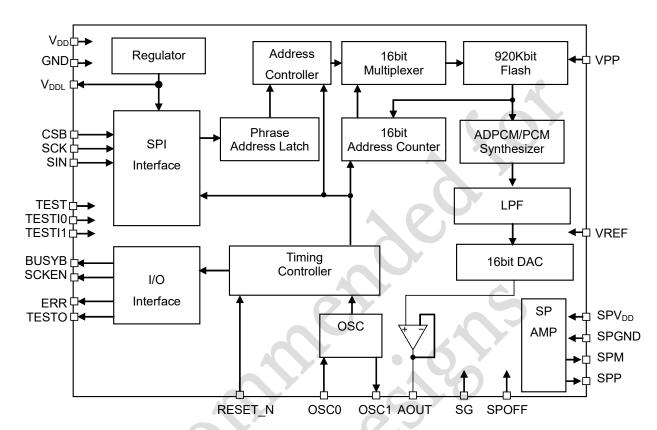
• Maximum event count: 62 events

Source oscillation frequency: 4.096 MHz (Typ.)
 Power supply voltage: 2.3V to 5.5V
 Flash memory rewrite cycles 80 times (ML22Q321)

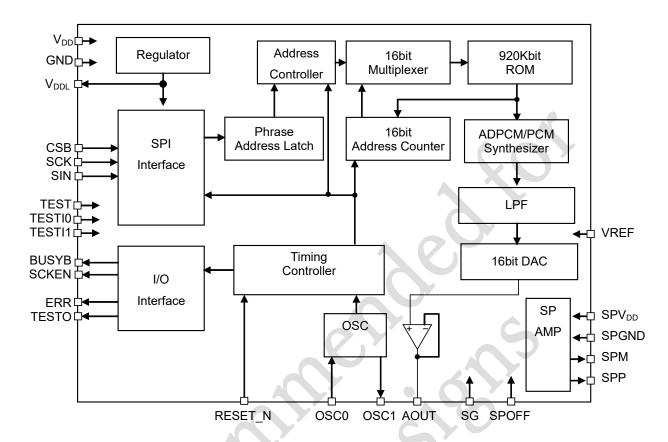
• Operating temperature range: -40° C to $+85^{\circ}$ C

Package: 30-pin plastic SSOP (SSOP30-56-0.65-Z6K8-MC)
 Product name: ML22321-xxxMB (xxx: ROM code number)

ML22Q321-NNNMB/ML22Q321-xxxMB(xxx: ROM code number)

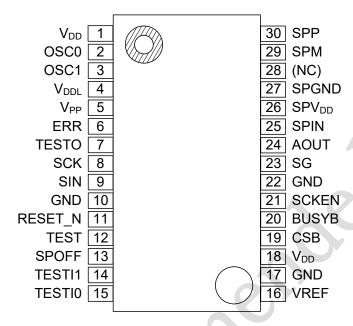


HQ-ADPCM is audio compression technology featuring high-quality sound. It was developed by "Ky's". "Ky's" is a registered trademark of Kyushu Institute of Technology, one of the national universities in Japan.



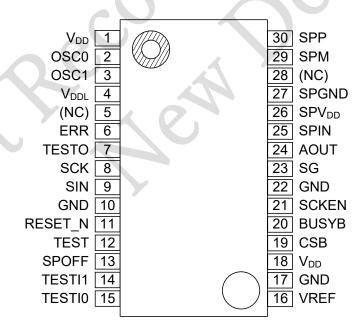
BLOCK DIAGRAM

ML22Q321-NNN/ML22Q321-xxx



ML22321-xxx

PIN CONFIGURATION (TOP VIEW)


ML22Q321-NNNMB/ML22Q321-xxxMB

NC:unused pin

30-pin Plastic SSOP

ML22321-xxxMB

NC:unused pin

30-pin Plastic SSOP

PIN DESCRIPTIONS

Pin No.	symbol	I/O	Description
11	RESET_N	I	Place this pin at a "L" level when powered on. After the supply voltage is settled, place this pin at a "H" level.
19	CSB	I	Chip select pin. At the "L" level, SCK0 pin and SIN0 pin are available.
8	SCK	I	Synchronous clock input pin for serial interface.
9	SIN	I	Input pin of synchronous serial data.
13	SPOFF	I	Control pin of internal speaker amplifier. In "H" level input, internal speaker amplifier is turned off.
16	VREF	I	Volume control pin. Input the voltage of the range from VDD to GND. Volume is the maximum when input voltage is VDD.
12	TEST	I	Input pin for testing. Fix this pin at a "L" level (GND level).
15	TESTI0	I	Input pin for testing. Fix this pin at a "L" level (GND level).
14	TESTI1	I	Input pin for testing. Fix this pin at a "L" level (GND level).
2	OSC0	I	Pin for connecting a crystal or a ceramic vibrator. A feed back resistor (about 1 $\mathrm{M}\Omega$) is included between OSC0 and OSC1 pins. When a vibrator is used, place it as close to the LSI as possible.
3	OSC1	0	Pin for connecting a crystal or a ceramic vibrator. When a vibrator is used, place it as close to the LSI as possible.
20	BUSYB	0	Playback status signal output pin. "L" is outputted when an event is fixed. After playback is completed, "H" is outputted after WS3. Then, when the POP noise measure is completed, it turns standby state.
21	SCKEN	0	Output pin showing the permission state of SCK input of a serial interface The input of SCK and SIN is permitted during H" level output, and it is disregarded during H" level output
6	ERR	0	Error output pin for thermal detection and disconnection detection. If disconnection detection or a higher temperature than the judgment temperature is detected, this pin output "H". Setting event 1, operate the disconnection detection. And the 100ms "H" pulse is output right after the event start.
24	AOUT	0	Playback signal output pin. When you use built-in speaker amplifier, connect with the SPIN pin.
7	TESTO	0	Output pin for test.
5	VPP *Note 1	_	Power supply pin for rewriting Flash memory. Fix this pin to GND except when rewriting Flash memory.
1,18	V_{DD}	-	Digital power supply pin. Connect a capacitor of 0.1 μF or more between this pin and GND.
4	V _{DDL}	_	Output pin of the regulator for the internal logic power supply. Connect a electrolytic capacitor of 10 uF or more and a ceramic capacitor of 0.1 μ F or more between the V _{DDL} and GND pins.
10,17,22	GND		Digital ground pin.
27	SPGND	_	Speaker amplifier ground pin.
26	SPVDD	_	Speaker amplifier power supply pin.
25	SPIN	ı	Analog input pin of internal speaker amplifier.
23	SG	0	Built-in speaker amplifier's reference voltage output pin. Connect a capacitor of 0.1 µF or more between this pin and GND.
	000	_	Desitive evenus via of the built in an advangementifier
30 29	SPP SPM	0	Positive output pin of the built-in speaker amplifier. Negative output pin of the built-in speaker amplifier.

Notes: 1. Applies to ML22Q321-NNN

ABSOLUTE MAXIMUM RATINGS

(GND = SPGND = 0 V)

			(1	<u> 3110 - 31 GIND - 0 V</u>
Parameter	Symbol	Condition	Rating	Unit
Digital power supply voltage	V_{DD}		-0.3 to +7.0	V
Internal logic power supply voltage	V _{DDL}		-0.3 to +3.6	V
Speaker power supply voltage	SPV _{DD}	Ta = 25 °C	-0.3 to +7.0	V
Flash power supply voltage (Note 1)	VPP		-0.3 to +9.5	V
Input voltage	Vin	Ta = 25 °C When JEDEC 2-layer board is mounted	-0.3 to V _{DD} +0.3	V
Power dissipation	P _D	Ta = 25 °C	861	mW
Output short current	I _{SC1}	except LED drive pin, Ta = 25 °C	-12 to +11	mA
2	I _{SC2}	LED drive pin, Ta = 25 °C	-12 to +20	mA
Storage temperature	T _{STG}	_	-55 to +150	°C

Note 1: Applies to the ML22Q321-NNN

RECOMMENDED OPERATING CONDITIONS

					(G	ND = SPGND = 0 V
Parameter	Symbol	Condition		Range		Unit
		_		2.3 to 5.5		
Digital power supply voltage	V_{DD}	ML22Q321 read	7	2.3 to 5.5		V
		ML22Q321 write		3.0 to 5.5		
Speaker power supply voltage	SPV _{DD}		2.3 to 5.5		2.3 to 5.5	
Flash power supply voltage	VPP	ML22Q321 write		7.7 to 8.3		V
Flash memory rewrite cycles	N	ML22Q321		80		times
	T _{OP1}	ML22321	-40 to +85			
Operating temperature	T _{OP2}	ML22Q321 read		-40 to +85	j	°C
X	Торз	ML22Q321 write		0 to +40		
Course easillation frequency	•		Min.	Тур.	Max.	MHz
Source oscillation frequency	fosc	_	3.5	4.096	4.5] IVIM2

ELECTRICAL CHARACTERISTICS

DC Characteristics

 V_{DD} = SPV_{DD} = 2.3 to 5.5 V, GND = SPGND = 0 V, Ta = -40 to +85°C

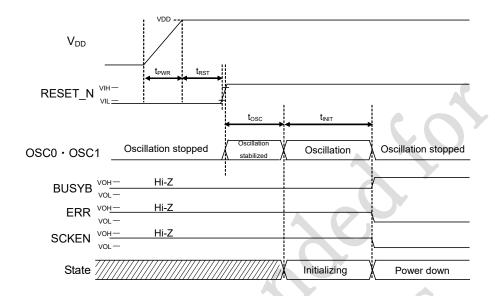
			10 0.0 t, 0.1B		0 t, .u .	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" input voltage	VIH	_	0.7×V _{DD}	ı	V_{DD}	V
"L" voltage	VIL	_	0	_	0.3×V _{DD}	V
"H" output voltage 1	V _{OH1}	$I_{OH} = -0.5 \text{ mA}$	V _{DD} -0.5		_	V
"H" output voltage 2	V _{OH2}	I _{OH} = 100µA OSC1 pin	V _{DD} -0.5		_	V
"L" output voltage 1	V _{OL1}	$I_{OL} = 0.5 \text{ mA}$	_	1	0.5	V
"L" output voltage 2	V _{OL2}	I _{OL} = 100μA OSC1 pin		X	0.5	V
"H" input current 1	I _{IH1}	$V_{IH} = V_{DD}$	_	+	1	μA
"H" input current 2	I _{IH2}	$V_{IH} = V_{DD}$ TEST, TESTI0, TESTI1 pin	0.02	0.3	1.5	mA
"L" input current 1	I _{IL1}	V _{IL} = GND	-1		_	μA
"L" input current 2	I _{IL2}	V _{IL} = GND RESET_N pin	-1.5	-0.3	-0.02	mA
Supply current during	I _{DD1}	Non-loaded output $V_{DD} = SPV_{DD} = 3.0V$	_	2.5	12	- mA
operate	I _{DD2}	Non-loaded output $V_{DD} = SPV_{DD} = 5.0V$	_	8	12	IIIA
Supply current during	I _{DDS1}	Ta ≦40°C	-,^	0.5	2.0	μΑ
"H" output voltage 1 "H" output voltage 2 "L" output voltage 1 "L" output voltage 2 "H" input current 1 "H" input current 2 "L" input current 2 Supply current during operate	I _{DDS2}	Ta ≦ 85°C		0.5	8.0	μΛ

Analog Characteristics

 V_{DD} = SPV_{DD} = 2.3 to 5.5 V, GND = SPGND = 0 V, Ta = -40 to +85°C

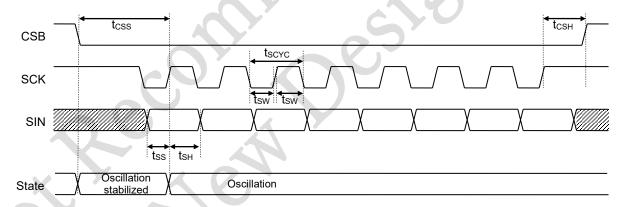
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
AOUT output load resistance	RLA	During 1/2 V _{DD} output	10	_	_	kΩ
AOUT output voltage range	V _{AO}	No output load	1/6×V _{DD}	_	5/6×V _{DD}	V
SG output voltage	Vsg	∠ ←	0.95xVpd/2	V _{DD} /2	1.05xVpp/2	V
SG output resistance	Rsg		57	96	135	kΩ
SPM, SPP output load resistance	RLSP		8	_	_	Ω
Speaker amplifier output power	Pspo	SPV _{DD} =5.0V, f=1kHz, R _{SPO} =8 Ω , THD \ge 10%	_	1	_	W
Output offset voltage between SPM and SPP with no signal present	V _{OF}	SPIN-SPM gain=0dB 8Ω load	-50	_	50	mV

AC Characteristics

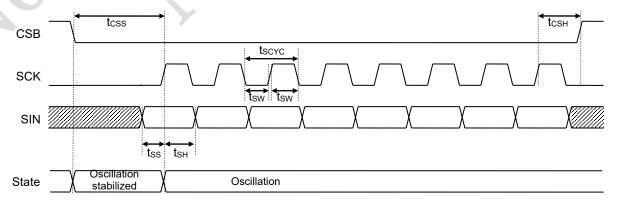

AC Characteristics	Vnn =	= SPV _{DD} = 2.3 to 5.5 V, GND	= SPGN	D = 0 V	Ta = -40) to +85°C
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Duty cycle of source oscillation	f _{duty}	_	40	50	60	%
RESET_N input pulse width	t _{RST}	_	100	_		μS
Voltage startup time	t _{PWR}	_	_	_	10	ms
Initialize time	t _{INIT}	f _{OSC} =4.096MHz	20		22	ms
Oscillation stabilizing time	tosc	_	_	2	20	ms
SCK input cycle	tscyc	_	500	4	_	ns
SCK input pulse width	tsw	_	200	->	_	ns
Setup time of SIN to the rising of SCK	tss		50)		ns
Hold time of SIN to the rising of SCK	tsн	- A	50		_	ns
Setup time of CSB to the rising of SCK	tcss	_		2	20	ms
Hold time of CSB to the rising of SCK	tсsн	_	100	_		ns
Output delay time1 of SCKEN to falling of CSB	t _{DSEN1}	At the time of release of a standby state	_	_	20	ms
Output delay time2 of SCKEN to falling of CSB	t _{DSEN2}	At the time of the continuous input of an event	_	_	10	μs
Output delay time of BUSYB to falling of SCK	t _{DBSY}			_	400	μS
"H" level time of CSB	tсsвн	7.7 -	1	5 —	_	ms
SG pin voltage stabilization time(Rising)	t _{sgr}	f _{OSC} =4.096MHz	32	_	34	ms
SG pin voltage stabilization time(Falling)	tsgf	fosc=4.096MHz	64	_	66	ms
Pop noise elimination time	tpopr tpopr	fosc=4.096MHz	40	_	42	ms
Disconnection judging time	t	777	100			me

by the DISCONNECT event

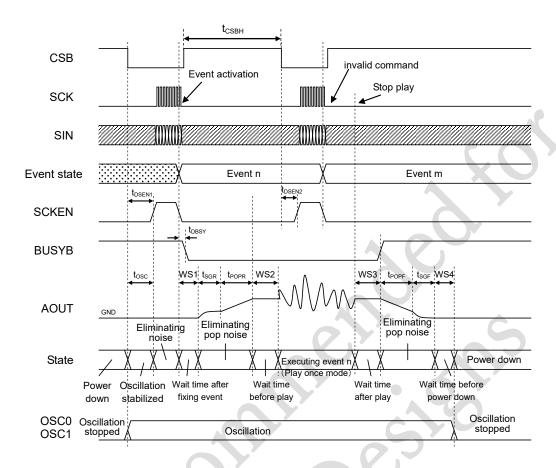
Load capacitance of the output pins = 55 pF (max.)

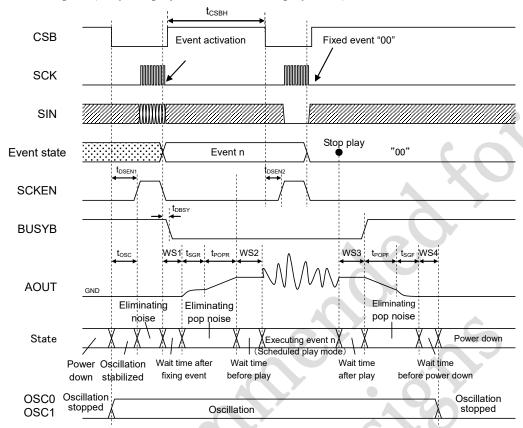

TIMING DIAGRAMS

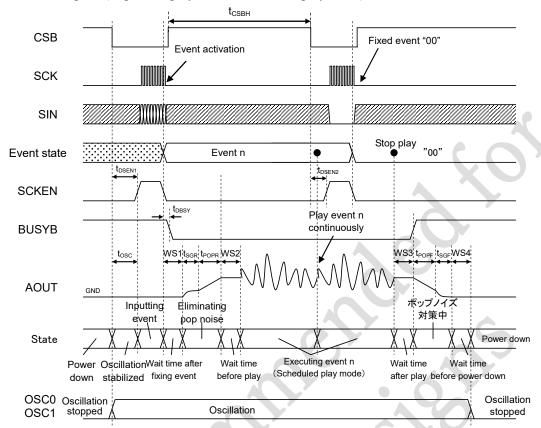
Power On

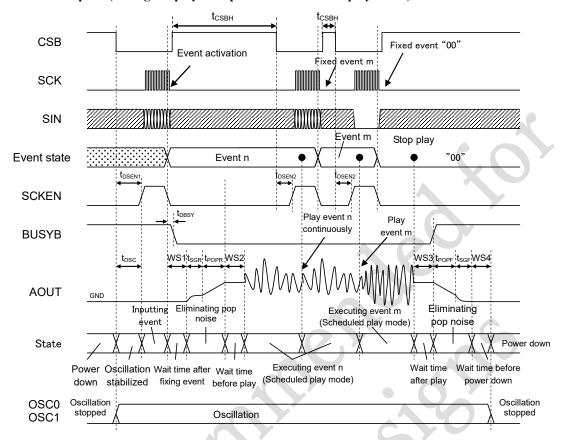


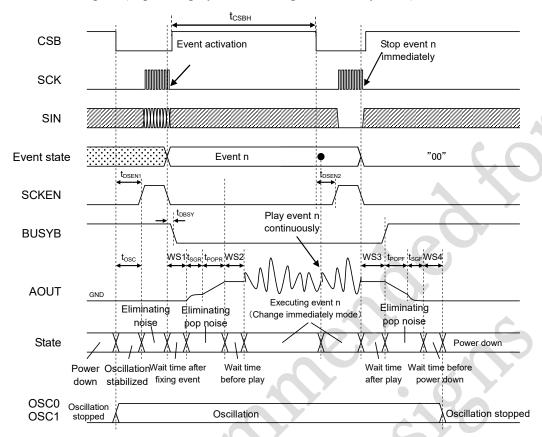
Serial Interface

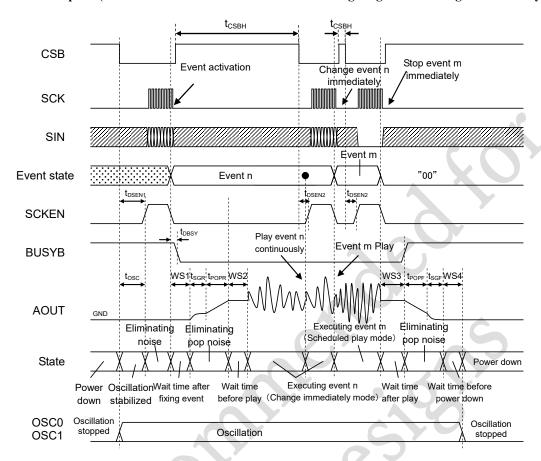

• When the default value of SCK is "H"


·When the default value of SCK is "L"


Event Control example 1 (Only one playback in Play once mode)

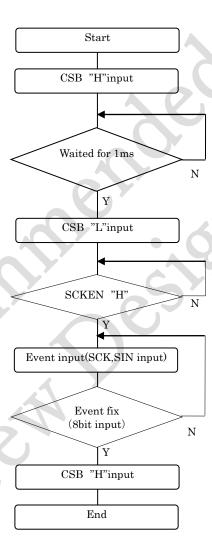

Event Control example 2 (Only one playback in Scheduled play mode)


Event Control example 3 (Repetitive playback in Scheduled play mode)


Event Control example 4 (Change in playback phrase in Scheduled play mode)

Event Control example 5 (Repetitive playback in Change immediately mode)

Event Control example 6 (Different consecutive event execution timing diagram in Change immediately mode)

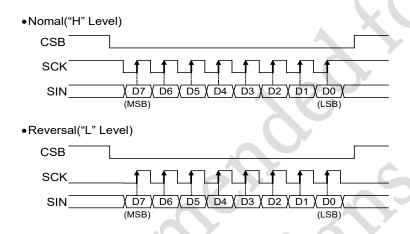


FUNCTIONAL DESCRIPTION

The "Speech LSI Utility" is used for the setting of an each function and the creating of ROM data. The Speech LSI Utility is dedicated software.

Serial interface input flow chart

The timing to which the input of serial interface is permitted can be judged by monitoring the output of SCKEN. The flow chart is shown below.


Synchronous Serial Command Interface

The CSB, SCK, SIN pins are used to input the command data. Driving the CSB pin to "L" level enables the serial CPU interface. After the CSB pin is driven to "L" level, the command data are input through the SIN pin from the MSB or LSB synchronized with the SCK clock. The command data shifts in through the SIN pin at the rising edge of the SCK clock pulse. Then, a command is executed at the rising edge of the eighth pulse of the SCK clock.

The initial value of the SCK pin can be chosen by the mask option of Speech Utility. When setting the initial value of the SCK pin as "H" level, please choose "Nomal ("H" Level)" as a mask option. When setting the initial value of the SCK pin as "L" level, please choose "Reversal("L" Level)" as a mask option.

After a command input should return the CSB pin to "H" level.

Data input timing

Playback mode setup

Playback mode can be set up for every phrase. Playback mode is set into the ROM data. The ROM data is created using a Speech LSI Utility. The Speech LSI Utility is dedicated software.

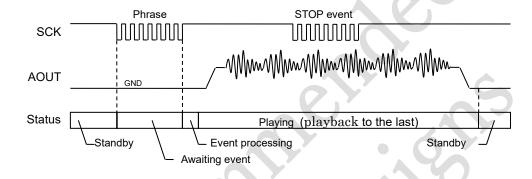
Playback mode	Operation
Play Once	This mode is playback once. All the commands become invalid during playback.
Scheduled Play	The playback continues until the following command will be inputted, if playback starts. When the following command is inputted into playback, after playback of the present phrase is completed, the following command is executed.
Change Immediately	The playback continues until the following command will be inputted, if playback starts. When the following phrase is inputted into playback, playback of the present phrase is ended on the way, and playback of the following phrase starts.

Event List

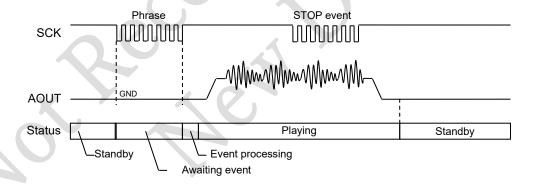
Each event is configured by the unit of byte (8-bit).

Event	D7	D6	D5	D4	D3	D2	D1	D0	Description
Stop	0	0	0	0	0	0	0	0	Stop event. The Stop event becomes effective except the phrase in Play Once mode.
Disconnection Detection	0	0	0	0	0	0	0	1	Disconnection Detection event. Please input the Stop event, after you use the Disconnection Detection event.
	0	0	0	0	0	0	1	0	PHRASE02
	0	0	0	0	0	0	1	1	PHRASE03
					: /				:
Play	0	0	0	0	1	0	0	1	PHRASE09
	0	0	0	0	1	0	1	0	PHRASE0A
X		•	4		<i>(</i>)		•		:
	0	0	1	1	1	1	1	1	PHRASE3F

Description of Command Functions

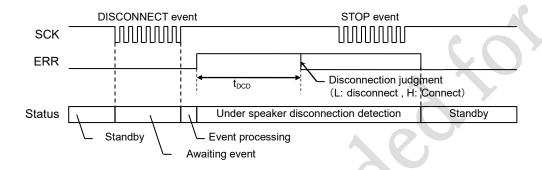

1. Stop event

0 0 0 0 0	0	0	0	1
-----------	---	---	---	---


The Stop event is used to stop the repetitive playback. The Stop event becomes effective except the phrase in Play Once mode. When you use Play Once mode, the Stop event is ignored.

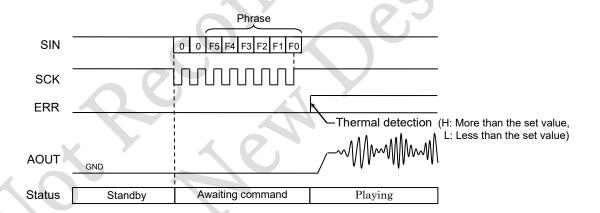
When you use Scheduled Play mode, a phrase is played back to the last and the playback is stopped, after the Stop event is inputted. Furthermore, when you use Change Immediately mode, a phrase is not played back to the last and the playback is stopped forcibly, after the Stop event is inputted.

• Stop event operation in the case of Scheduled Play mode


• Stop event operation in the case of Change Immediately mode

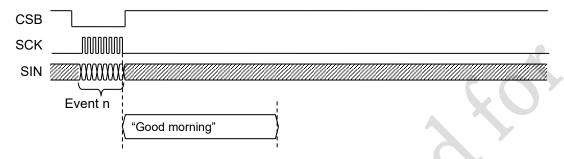
2. Disconnection Detection event

0	1


The Disconnection Detection event is used to diagnose whether the speaker is disconnected or not. When the speaker is disconnected, ERR pin outputs "L". Please input the STOP event, after you use the Disconnection Detection event.

3. Play n (n = Phrase 02 to 3F) event

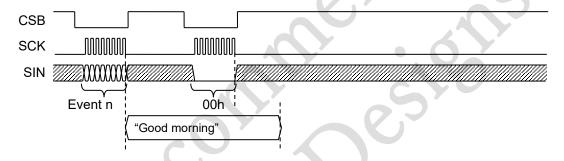
The Play n (n = Phrase 02 to 3F) event is used to start playback phrase. After inputting a Play n (n = Phrase 02 to 3F) event, temperature detection is carried out.



O Event Control example 1 (Only one playback in Play once mode)

Operation: The specified event is performed once after event starting. Other event inputs are disregarded during event

execution.

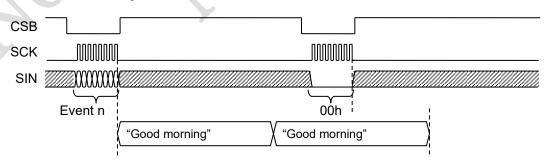

Control method: Input the event number to be executed to the serial interface pins.

O Event Control example 2 (Only one playback in Scheduled play mode)

Operation: The specified event is performed once.

Control method: Input the event number to be executed to the serial interface pins. In this mode, the event fixed at the time of the end of phrase playback is performed repeatedly. Therefore, after event activation, input stop event"00" into the serial interface pins before the event is completed.

O Event Control example 3 (Repetitive playback in Scheduled play mode)

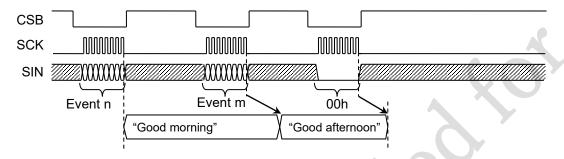

Operation: After an event starts, unless a stop command is inputted, the event is performed repetitively.

When a stop event is inputted, the event under execution is performed to the last and stops.

Control method: Input the event number to be executed to the serial interface pins. In this mode, the event fixed at the time of

the end of phrase playback is performed repeatedly. After an event starts, unless a stop command is inputted, the event is performed repetitively. When desired to stop event execution, input stop command to the serial

interface pins.

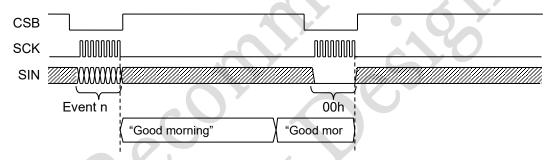


O Event Control example 4 (Change in playback phrase in Scheduled play mode)

Operation: The event execution specified first is ended and newly specified event execution is started.

Control method:

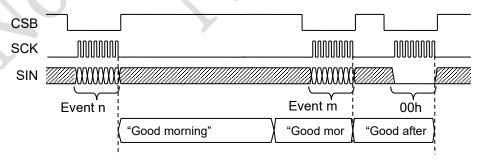
Input the event number to be executed to the serial interface pins. In this mode, the event fixd at the time of the end of phrase playback is performed repeatedly. Therefore, after event activation, input a new event into the serial interface pins before the event is completed.


O Event Control example 5 (Repetitive playback in Change immediately mode)

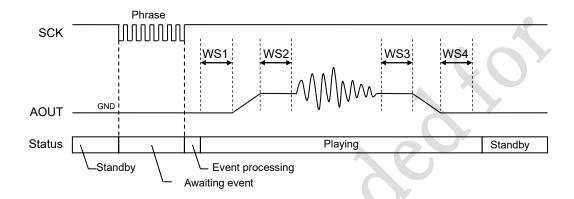
Operation: After an event starts, unless a stop command is inputted, the event is performed repetitively.

When a stop event is inputted, the event stops immediately.

Control method: Input the event number to be executed to the serial interface pins. When desired to stop event execution,


input stop command to the serial interface pins. the event stops immediately.

O Event Control example 6 (Change in playback phrase in Change immediately mode)


Operation: The event under execution is immediately changed into a new event.

Control method: Input the event number to be executed to the serial interface pins. After an event starts, input the next event number to the serial interface pins. The event under execution is immediately changed into a new event.

Wait time setting before and after playback (WS1, WS2, WS3, WS4)

Each phrase can set up the wait time before and after playback. It is set into the ROM. The ROM data is created using a Speech LSI Utility. The Speech LSI Utility is dedicated software.

WS1: Time after inputting a phrase address, until SPP/SPM pins are enabled.

WS2: Time after SPP/SPM pins are enabled, until playback is started.

WS3: Time after playback is completed, until SPP/SPM pins are disabled.

WS4: Time after SPP/SPM pins are disabled, until it will be in a standby state.

WS1-WS4 can be arbitrarily set up between 0 to1020ms (4ms unit).

Setting	wait time	Setting	playback (W wait time	Setting	wait time	Setting	wait time	Setting	wait tim
value	[ms]	value	[ms]	value	[ms]	value	[ms]	value	[ms]
00h	0	34h	208	67h	412	9Ah	616	CDh	820
01h	4	35h	212	68h	416	9Bh	620	CEh	824
02h	8	36h	216	69h	420	9Ch	624	CFh	828
03h	12	37h	220	6Ah	424	9Dh	628	D0h	832
04h	16	38h	224	6Bh	428	9Eh	632	D1h	836
05h	20	39h	228	6Ch	432	9Fh	636	D2h	840
06h	24	3Ah	232	6Dh	436	A0h	640	D3h	844
07h	28	3Bh	236	6Eh	440	Alh	644	D4h	848
08h	32	3Ch	240	6Fh	444	A2h	648	D5h	852
09h	36	3Dh	244	70h	448	A3h	652	D6h	856
0Ah	40	3Eh	248	71h	452	A4h	656	D7h	860
0Bh	44	3Fh	252	72h	456	A5h	660	D8h	864
0Ch	48	40h	256	73h	460	A6h	664	D9h	868
0Dh	52	41h	260	74h	464	A7h	668	DAh	872
0Eh	56	42h	264	75h	468	A8h	672	DBh	876
0Fh	60	43h	268	76h	472	A9h	676	DCh	880
10h	64	44h	272	77h	476	AAh	680	DDh	884
11h	68	45h	276	78h	480	ABh	684	DEh	888
12h	72	46h	280	79h	484	ACh	688	DFh	892
13h	76	47h	284	7Ah	488	ADh	692	E0h	896
14h	80	48h	288	7Bh	492	AEh	696	Elh	900
15h	84	49h	292	7Ch	496	AFh	700	E2h	904
16h	88	4Ah	296	7Dh	500	B0h	704	E3h	908
17h	92	4Bh	300	7Eh	504	Blh	704	E4h	912
18h	96	4Ch	304	7En 7Fh	508	B2h	712	E5h	916
19h	100	4Dh	304	80h	512	B3h	716	E6h	920
14h	100	4Eh	312	81h	516	B4h	720	E7h	920
1Bh		4En	316	82h	520	B5h	724	E8h	924
1Ch	108 112	50h	320		524				932
				83h		B6h	728	E9h	
1Dh	116	51h	324	84h	528	B7h	732	EAh	936
1Eh	120	52h	328	85h	532	B8h	736	EBh	940
1Fh	124	53h	332	86h	536	B9h	740	ECh	944
20h	128	54h	336	87h	540	BAh	744	EDh	948
21h	132	55h	340	88h	544	BBh	748	EEh	952
22h	136	56h	344	89h	548	BCh	752	EFh	956
23h	140	57h	348	8Ah	552	BDh	756	F0h	960
24h	144	58h	352	8Bh	556	BEh	760	F1h	964
25h	148	59h	356	8Ch	560	BFh	764	F2h	968
26h	152	5Ah	360	8Dh	564	C0h	768	F3h	972
27h	156	5Bh	364	8Eh	568	Clh	772	F4h	976
28h	160	5Ch	368	8Fh	572	C2h	776	F5h	980
29h	164	5Dh	372	90h	576	C3h	780	F6h	984
2Ah	168	5Eh	376	91h	580	C4h	784	F7h	988
2Bh	172	5Fh	380	92h	584	C5h	788	F8h	992
2Ch	176	60h	384	93h	588	C6h	792	F9h	996
2Dh	180	61h	388	94h	592	C7h	796	FAh	1000
2Eh	184	62h	392	95h	596	C8h	800	FBh	1004
2Fh	188	63h	396	96h	600	C9h	804	FCh	1008
30h	192	64h	400	97h	604	CAh	808	FDh	1012
31h	196	65h	404	98h	608	CBh	812	FEh	1016
3111									

Volume control (Volume)

Use or unuse of volume control setting by the external VREF input is selectable.

When not using the external VREF input function, the VREF input value becomes null, and it comes to be able to setup volume by ROM data in each phrase.

When using an external VREF input function, the analog value inputted from VREF is changed into 32 steps of volume preset values by ADC. Taking in of a VREF value is carried out every about 10ms.

In this case, the volume setup by ROM data becomes null.

And volume setting is as follows.

Setting value	Volume [dB]	Setting value	Volume [dB]	Setting value	Volume [dB]
00h	+2.98	0Ah	-0.41	15h	-6.87
01h	+2.70	0Bh	-0.83	16h	-7.79
02h	+2.40	0Ch	-1.28	17h	-8.82
03h	+2.10	0Dh	-1.75	18h	-9.99
04h	+1.78	0Eh	-2.25	19h	-11.34
05h	+1.45	0Fh	-2.77	1Ah	-12.94
06h	+1.11	10h	-3.34	1Bh	-14.90
07h	+0.76	11h	-3.94	1Ch	-17.44
08h	+0.39	12h	-4.58	1Dh	-21.04
09h	+0.00	13h	-5.28	1Eh	-27.31
		14h	-6.04	1Fh	OFF

Mask Option Setting

The following table shows the items which can be set by using the Mask option (ROM data): During initialization processing after power on, mask option data are transferd automatically to each setting.

The ROM data is created using a Speech LSI Utility.

The Speech LSI Utility is dedicated software.

Function	Description	Parameter	
Setting of the internal	Use or unuse of the internal speaker amplifier selectable	Speaker Amp control	
speaker amplifier		Use of Speaker Amp	
Setting of the internal	+6dB or +12dB selectable	Speaker Amp control	
speaker Gain		Gain	
	A	+6dB	
		+12dB	
SPOFF pin setting	High-impedance input, pull-up input, or pull-down input	Speaker Amp control	
	selectable	SPOFF Pin	
		Hi-Z	
		Pull Down	
		Pull Up	
Setting of thermal	Use or unuse of thermal detection selectable	Speaker AMP control	
detection		Thermal check ON	
Setting of judgement	150°C or 125°C or 100°C selectable	Speaker AMP control	
temperature		Judgement Temperature	
		150C	
	\mathcal{A}	125C	
		100C	
SCK pin setting	"H" input or "L" input of default selectable	SPI setting	
	\mathcal{A}	Clock polarity	
		Normal (H Level)	
		Reversal (L Level)	
SIN pin setting	LSB first or MSB first selectable	SPI setting	
		Data transfer type	
		LSB first	
	V) Y	MSB first	
Volume control setting	VREF volume function use / unused selectable	Volume Control	
		Sets Volume by VREF-pin	

Voice Synthesis Algorithm

Five types of voice synthesis algorithm are supported. They are 4-bit ADPCM2, 8-bit non-linear PCM, 8-bit straight PCM and 16-bit straight PCM. Select the best one according to the characteristics of voice. The following table shows key features of each algorithm.

Voice synthesis algorithm	Feature		
HQ- ADPCM	Algorithm that enables high sound quality and high compression, which have been achieved by the improved 4-bit ADPCM that uses variable bit-length coding.		
4-bit ADPCM2	Up version of LAPIS Technology's specific voice synthesis algorithm (: 4-bit ADPCM). Voice quality is improved.		
8-bit Nonlinear PCM	Algorithm, which plays back mid-range of waveform as 10-bit equivalent voice quality.		
8-bit PCM	Normal 8-bit PCM algorithm		
16-bit PCM	Normal 16-bit PCM algorithm		

Memory Allocation and Creating Voice Data

The ROM is partitioned into four data areas: voice (i.e., phrase) control area, test area, voice area, and edit ROM area. The voice control area manages the voice data in the ROM. It contains data for controlling the start/stop addresses of voice data

for 62 phrases, use/non-use of the edit ROM function and so on.

The test area contains data for testing.

The voice area contains actual waveform data.

The edit ROM area contains data for effective use of voice data. For the details, refer to the section of "Edit ROM Function." The edit ROM area is not available if the edit ROM is not used.

The ROM data is created using a dedicated tool.

Configuration of ROM data

0x00000	Prohibition of use area
0x01FFF	(Fixed 64 Kbits)
0x02000	
max.0x0EFFF	Voice area 2
	Edit ROM area
	Depends on creation
max.0x0EFFF	of ROM data.
0x0F000 0x0FFFF	Test area
0x10000	Voice control area
	(Fixed 8 Kbits)
0x103FF	()
0x10400	
	Voice area 1
0x1FFFF	

The one phrase must make 50ms or more length.

Since the data which exceeds 64 K bytes in one phrage cannot be played, please devide the voice phrase to be set to each below 64 K bytes, and join those data by the edit phrase function.

Playback Time and Memory Capacity

The playback time depends on the memory capacity, sampling frequency, and the playback method. The equation to know the playback time is shown below. But this is not applied if the edit ROM function is used.

Playback time [sec] =
$$\frac{1.024 \times (\text{Voice area 1 + Voice area 2}) \text{ [Kbits]}}{\text{Sampling frequency [kHz]} \times \text{Bit length}}$$

(Bit length is 4 at the 4-bit ADPCM2 and 8/16 at the PCM.)

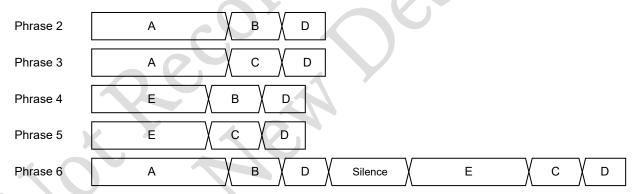
Example) In the case that the sampling frequency is 8 kHz, algorithm is 4-bit ADPCM2, the playback time is approx. 29.4 seconds, as shown below.

Playback time =
$$\frac{1.024 \times 920 \text{ [Kbits]}}{8 \text{ [kHz]} \times 4 \text{ [bits]}} \cong 29.4 \text{ [sec]}$$

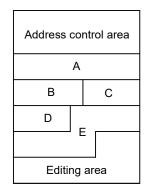
Edit ROM Function

The edit ROM function makes it possible to play back multiple phrases in succession. The following functions are set using the edit ROM function:

• Continuous playback: There is no limit to set the number of times of the continuous playback. It depends on the


memory capacity only.

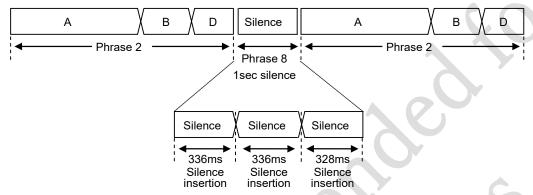
• Silence insertion function: 20ms to 1,024 ms (4ms unit)


Note: Silent insertion time varies for ± 1 ms by the sampling frequency

It is possible to use voice ROM effectively to use the edit ROM function. Below is an example of the ROM structure, case of using the edit ROM function.

Example 1) Phrases using the Edit ROM Function

Example 2) Structure of the ROM that contents of Example 1 are stored



Notice of silence insertion function

If it is only silence phrase registered, please put in order three or more silence phrase. The phrase which is constituted from one or two of silence phrase does not playback.

Example 3) Phrase composition in the case of using silence insertion function

The phrase to playback (The phrase 2 is playbacked twice on both sides of 1 sec silence.)

1 sec which is constituted by the three silences is registered as the phrase 8

The ROM consumption when using the edit ROM function

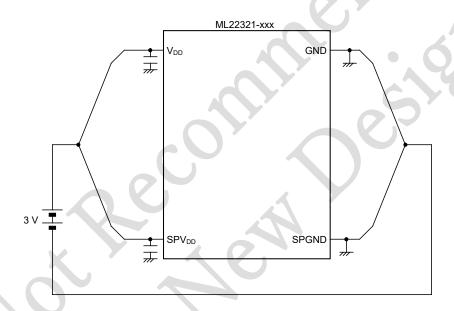
When playing more than one phrases continuously, the ROM consumption is used 64 bits per 1 phrase. The silence insertion function is used 16 bits every once.

TERMINATION OF THE V_{DDL} PIN

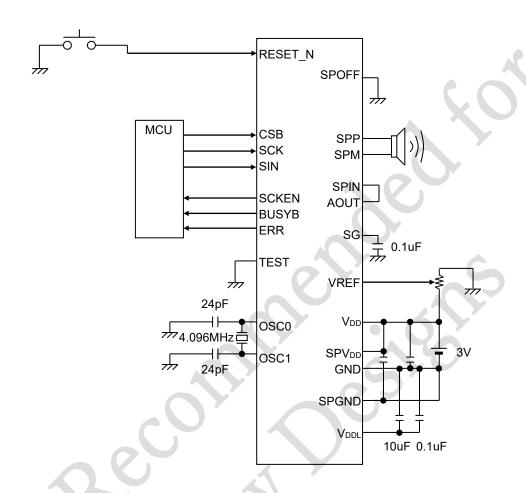
The V_{DDL} pin is the regulator output that is power supply pin for the internal logic circuits. Connect a capacitor between this pin and the ground in order to prevent noise generation and power fluctuation.

The recommended capacitance value is shown below. However, it is important to evaluate and decide using the own board. Also, start the next operation after each output voltage is stabilized.

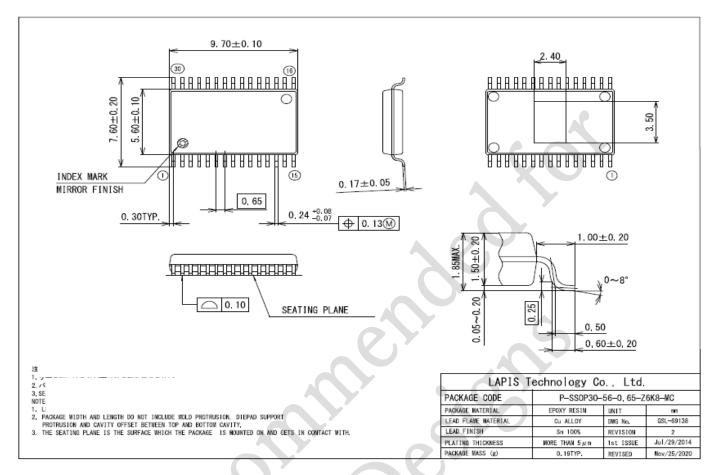
Pin	Recommended capacitance value	Remarks
V _{DDL}	10 μF ±20%	The larger the connection capacitance, the longer the settling time.


POWER SUPPLY WIRING

The power supply of this LSI is divided into the following sections:


- Digital power supply (V_{DD})
- Analog power supply (SPV_{DD})

As shown below, supply the same power supply to V_{DD} and SPV_{DD} and separate the analog and digital power supplies by wiring.


Power supply voltage = 3 V

APPLICATION CIRCUIT

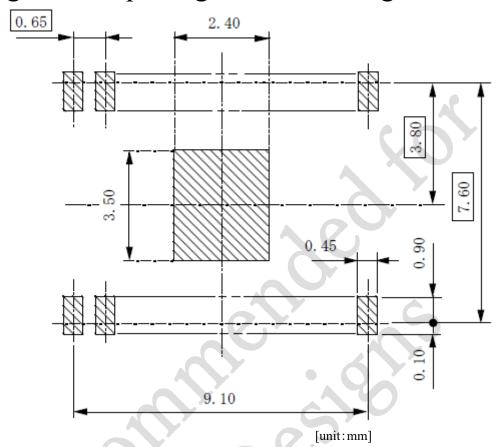
PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact ROHM's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

The heat resistance (example) of this LSI is shown below. Heat resistance (θ Ja) changes with the size and the number of layers of a substrate.

30.000	
Die pad on the back of a package partial ground contact area	100%
PCB	JEDEC (W/L/t=76.2/114.5/1.6(mm))
PCB Layer	4L
Air cooling conditions	Calm (0m/sec)
Heat resistance(θJa)	45[°C/W]
Power consumption of Chip PMax at OutputPower 1W (5V)	0.818[W]
Power consumption of Chip PMax at OutputPower 0.5W (3.3V)	0.283[W]


TjMax of this LSI is 125°C. TjMax is expressed with the following formulas.

 $TjMax = TaMax + \theta Ja \times PMax$

Mounting area for package lead soldering to PCB (reference data) is shown below.

Die pad on the back of a package should connect with the substrate of opening or a GND for heat dissipation.

Mounting area for package lead soldering to PC boards

When laying out PC boards, it is important to design the foot pattern so as to give consideration to ease of mounting, bonding, positioning of parts, reliability, writing, and elimination of solder bridges.

The optimum design for the foot pattern varies with the materials of the substrate, the sort and thickness of used soldering paste, and the way of soldering. Therefore when laying out the foot pattern on the PC boards, refer to this figure which mean themounting area that the package leads are allowable for soldering to PC boards.

REVISION HISTORY

Dogument	Date	Page		
Document No.		Previous Edition	Current Edition	Description
FEDL22321-01	Mar. 23,2015	_	ı	Final edition 1
	May. 27,2020	8	8	Add "H" level time of CSB
		9	9	Add BUSYB, ERR, SCKEN signal to Power On timing diagrams
FEDL22321-02		10-15	10-15	Add t _{CSBH}
		16	16	Add condition of CSB to Serial interface input flow chart
		32	32	Change of the package.
FEDL22321-03	Jun. 29,2022	_	ı	Change of company name.
		32	32	Modified package dimensions from QSL-68294 to QSL-69138.

NOTES

- 1) The information contained herein is subject to change without notice.
- 2) When using LAPIS Technology Products, refer to the latest product information (data sheets, user's manuals, application notes, etc.), and ensure that usage conditions (absolute maximum ratings, recommended operating conditions, etc.) are within the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. You are responsible for evaluating the safety of the final products or systems manufactured by you.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology or any third party with respect to LAPIS Technology Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore LAPIS Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) The Products are intended for use in general electronic equipment (AV/OA devices, communication, consumer systems, gaming/entertainment sets, etc.) as well as the applications indicated in this document. For use of our Products in applications requiring a high degree of reliability (as exemplified below), please be sure to contact a LAPIS Technology representative and must obtain written agreement: transportation equipment (cars, ships, trains, etc.), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems, etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us. Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS Technology does not warrant that such information is error-free and LAPIS Technology shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 8) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 9) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act..
- 10) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or LAPIS Technology's Products.
- 11) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.

(Note) "LAPIS Technology" as used in this document means LAPIS Technology Co., Ltd.

Copyright 2015-2022 LAPIS Technology Co., Ltd.

LAPIS Technology Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan https://www.lapis-tech.com/en/