Downloading...
 
product-image
 

4.5-18V 3.0A 1ch Synchronous Buck Converter - BD9D321EFJ

BD9D321EFJ is a synchronous buck switching regulator with built-in low on-resistance power MOSFETs. It is capable of providing current of up to 3A. The SLLM™ control provides excellent efficiency characteristics in light-load conditions which make the product appropriate for equipment and devices that demand minimal standby power consumption. External phase compensation circuit is not necessary for it is a constant on-time control DC/DC converter with high speed response.

Buy Evaluation BoardEvaluation Board Data Technical Data

* This product is a STANDARD grade product and not recommend for on-vehicle devices.
Part number
Status
Package
Unit Quantity
Minimum Package Quantity
Packing Type
RoHS
BD9D321EFJ-E2 Active HTSOP-J8 2500 2500 Taping Yes
 
Specifications:
Grade Standard
ch 1
Integrated FET / Controller Integrated FET
Buck / Boost / Buck-Boost / Inverting Buck
Synchronous / Nonsynchronous Synchronous
Vin1(Min.)[V] 4.5
Vin1(Max.)[V] 18.0
Vout1(Min.)[V] 0.765
Vout1(Max.)[V] 7.0
Iout1(Max.)[A] 3.0
SW frequency(Max.)[MHz] 0.7
Light Load mode Yes
EN Yes
PGOOD No
Operating Temperature (Min.)[°C] -40
Operating Temperature (Max.)[°C] 85
Features:
  •  Synchronous Single DC/DC Converter
     Constant On-time Control
     SLLM™ (Simple Light Load Mode) Control
     Over Current Protection
     Short Circuit Protection
     Thermal Shutdown Protection
     Under Voltage Lockout Protection
     Adjustable Soft Start
     HTSOP-J8 Package (Backside Heat Dissipation)
 
 
RELATED PRODUCTS
Other New/Updated Products Relating to Power Management
PART NUMBER Product Name Package Datasheet Distribution Inventory
BD9G102G-LB 6V to 42V, 0.5A 1ch Simple Buck Converter Integrated FET SSOP6   Buy Sample
BD9E103FJ 7V to 28V Input, 1.5A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   Buy Sample
BD9S200MUF-C 2.7V to 5.5V Input, 2A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   Buy Sample
BD9S400MUF-C 2.7V to 5.5V Input, 4A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   Buy Sample
BD9F800MUX 4.5V to 28V Input, 8.0A Integrated MOSFET Single Synchronous Buck DC/DC Converter VQFN11X3535A   inquiry
BD9B333GWZ Single Synchronous Buck DC/DC Converter, 2.7V to 5.5V Input, 3.0A Integrated MOSFET UCSP35L1   inquiry
New Products:
 
 
Technical Data
Evaluation Board User's Guide

BD9D321EFJ Evaluation Board User's Guide

Evaluation Board User's Guide

Evaluation Board for ROHM's BD9D321EFJ Synchronous Buck Converter with Integrated FET

Reference Circuits and Bomlist

Reference Circuits and Bomlist

Capacitor Calculation for Buck converter IC

This application note explains the calculation of external capacitor value for buck converter IC circuit.

Inductor Calculation for Buck converter IC

This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator IC circuits.

Resistor Value Table to set Output Voltage of Buck Converter IC

This Application Note offers reference table to easily set resistor values for output voltage with various internal reference voltages VREF.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

PCB Layout Techniques of Buck Converter

Major problems that arise from in appropriate layout may cause increase in noise superposed by output and switching signal, the deterioration of regulator, and also lack of stability...

The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit

Using unmatched MLCC may not obtain required target characteristics for power supply circuit and may cause abnormal operation. This application note explains the important points while using MLCC.

Calculation of Power Loss (Synchronous)

This application note describes how to obtain the power loss required to calculate the temperature of a semiconductor device. Temperature control is important to ensuring product reliability.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

Considerations for Power Inductors Used for Buck Converters

This application note explains the features and things to consider when shopping for power inductors.

Snubber Circuit for Buck Converter IC

In buck converter ICs, many high-frequency noises are generated at switch nodes. A snubber circuit provides one way of eliminating such harmonic noise. This application note explains how to set up the RC snubber circuits.

Efficiency of Buck Converter

This application note explains power loss factors and methods for calculating them. It also explains how the relative importance of power loss factors depends on the specifications of the switching power source.

Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)

This application note introduces a method for easily measuring the phase margin with a Frequency Response Analyzer (FRA) made by NF Corporation.